Please wait a minute...
J4  2014, Vol. 48 Issue (1): 168-173    DOI: 10.3785/j.issn.1008-973X.2014.01.026
土木工程     
环形加劲板方向受压钢管节点的承载力
沈国辉1,陈震1,邢月龙2,郭勇2,孙炳楠1
1.浙江大学 土木工程学系,浙江 杭州 310058; 2.浙江省电力设计院,浙江 杭州 310007
Bearing capacity of steel tubular joints under compression in
direction of annular ribbed plate
SHEN Guo-hui1, CHEN Zhen1, XING Yue-long2, GUO Yong2, SUN Bing-nan1
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China;
2. Electric Power Design Institute of Zhejiang Province, Hangzhou 310007, China
 全文: PDF(1438 KB)   HTML
摘要:

针对钢管节点环形加劲板受压的承载力问题,采用有限元分析和足尺试验进行研究.比较2种方法的计算结果,澄清中国的设计规定中承载力的物理含义,采用有限元方法系统研究多种参数下节点的承载力,并与规范公式结果进行比较.研究表明,通过有限元分析和足尺试验获得的荷载位移曲线比较接近;节点承载力随着主管厚度、环板宽度、环板厚度的增大而增大;不同参数下通过有限元计算获得的屈服承载力与规范公式结果的变化趋势基本一致.

Abstract:

Finite element simulations and full-scale tests were employed in order to analyze the bearing capacity of steel tubular joints under compression in the direction of annular ribbed plate. The results obtained from these two methods were compared. The physical meaning of the bearing strength of the joints regulated in the Chinese design code was clarified. The bearing strengths of the joints under different size parameters were calculated using finite element simulation, and the simulation results were compared with those calculated using the equations regulated by the Code. Results show that the load-displacement behaviors of the joint obtained using finite element simulations and full-scale tests are quite close. The bearing strengths of the joints increase with the thickness of the chord or the width of the annular ribbed plate or the thickness of the plate. The variation trends of bearing strengths of the joints with respect to the geometrical parameters of the joints obtained using finite element simulations are quite similar as those calculated with the equations regulated by the Code.

出版日期: 2014-01-01
:  TU 312.1  
基金资助:

国家自然科学基金资助项目(51178425).

作者简介: 沈国辉(1977-),男,副教授,从事结构风工程和结构计算分析. E-mail: ghshen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.

SHEN Guo-hui, CHEN Zhen, XING Yue-long, GUO Yong, SUN Bing-nan. Bearing capacity of steel tubular joints under compression in
direction of annular ribbed plate. J4, 2014, 48(1): 168-173.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.01.026        http://www.zjujournals.com/eng/CN/Y2014/V48/I1/168

[1] PAUL J C, MAKINO Y, KUROBANE Y. Ultimate resistance of unstiffened multiplanar tubular TT-and KK-joints [J]. Structural Engineering, ASCE, 1994, 120(10): 2853-2870.
[2] KANG C T, MOFFAT D G, MISTRY J. Strength of DT tubular joints with brace and chord compression [J]. Structural Engineering, ASCE, 1998, 124(7): 775-783.
[3] 朱世哲, 罗尧治, 娄荣. 双拱结构X型钢管相贯节点试验研究[J]. 浙江大学学报:工学版, 2008, 42(1): 99-104.
ZHU Shi-zhe, LUO Yao-zhi, LOU Rong. Experiment investigation of X-joint in double-arch structure [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(1): 99-104.
[4] 邢丽, 赵阳, 董石麟, 等. 矩形钢管焊接球节点的有限元分析与试验研究[J]. 浙江大学学报:工学版, 2006, 40(9): 1559-1563.
XING Li, ZHAO Yang, DONG Shi-lin, et al. Finite element analyses and experiments on welded spherical joints with rectangular tubes [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(9): 1559-1563.
[5] 鲍侃袁, 沈国辉, 孙炳楠, 等. 高耸钢管塔K型结点极限承载力的试验研究与理论分析[J]. 工程力学, 2008, 25(12): 114-122.
BAO Kan-yuan, SHEN Guo-hui, SUN Bing-nan, et al. Experimental study and theoretical analysis of ultimate strength of steel tubular k-joints of tall towers [J]. Engineering Mechanics, 2008, 25(12): 114-122.
[6] 刘红军, 李正良, 李茂华. 钢管输电塔环型加肋节点极限承载力研究[J], 工程力学, 2010, 27(10): 65-73.
LIU Hong-jun, LI Zheng-liang, LI Mao-hua. Study of ultimate strength of steel tubular joint with annular ribbed plate of transmission towers [J]. Engineering Mechanics, 2010, 27(10): 6573.
[7] 白强, 曾德森, 舒爱强, 等. 钢管输电塔环形加肋节点承载力分析[J]. 建筑结构,2012, 42(2): 103-106.
BAI Qiang, ZENG De-sen, SHU Ai-qiang, et al. Analysis on strength of tube-gusset joints in steel tubular tower with annular ribbed plate [J]. Building Structure, 2012, 42(2): 103-106.
[8] 国家电网公司. Q/GDW391-2009, 输电线路钢管塔构造设计规定 [S]. 北京:中国电力出版社, 2010.
[9] 日本铁塔协会. 输电线路钢管塔制作基准[S]. 东京:丸善株式会社, 1995.
[10] 陈震. 螺栓连接钢管节点承载力的有限元模拟研究[D]. 杭州: 浙江大学, 2012: 57-62.
CHEN Zhen. Finite element method simulation of bearing capacity of steel tubular joints with bolted connections [D]. Hangzhou: Zhejiang University, 2012: 57-62.
[11] AKIYAMA N. Experimental study on strength of joints in steel tubular structures [J]. Japanese Society of Steel Construction, 1974, 102(10): 37-68.
[12] 沈国辉, 陈震, 郭勇, 等. 螺栓节点板抗剪连接的有限元模拟方法研究[J]. 工程力学, 2013, 30(1): 119-125.
SHEN Guo-hui, CHEN Zhen, GUO Yong, et al. Finite element simulation methods applied to bolted gusset plates used as shear connectors [J]. Engineering Mechanics, 2013, 30(1): 119-125.
[13] 孙炳楠, 洪滔, 杨骊先. 工程弹塑性力学[M]. 杭州: 浙江大学出版社, 1998: 90-91.

[1] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[2] 杨伦,黄铭枫,楼文娟. 高层建筑周边三维瞬态风场的混合数值模拟[J]. J4, 2013, 47(5): 824-830.
[3] 章李刚,楼文娟,黄铭枫. 基于POD法控制模态选择的大跨屋盖
结构风致动力响应分析
[J]. J4, 2012, 46(9): 1599-1604.
[4] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[5] 沈国辉, 余关鹏, 孙炳楠, 楼文娟, 李庆祥, 杨仕超. 大型冷却塔风致响应的干扰效应[J]. J4, 2012, 46(1): 33-38.
[6] 沈国辉,袁光辉,楼文娟,孙炳楠. 绝缘子在输电塔线体系动力计算中的作用分析[J]. J4, 2011, 45(11): 1960-1965.
[7] 沈国辉, 孙炳楠, 叶尹, 楼文娟. 高压输电塔的断线分析和断线张力计算[J]. J4, 2011, 45(4): 678-683.