Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 217-230    DOI: 10.3785/j.issn.1008-973X.2026.01.021
环境工程     
基于微电极阵列的环境重金属检测研究进展
于翼铭1(),蔡巍1,2,*(),李毅3,付玮3,姚旭1,张停毅1,刁尚祺1,李丹1,林松清1,陈永顺1
1. 南方科技大学 海洋科学与工程系,广东 深圳 518055
2. 南方科技大学 海洋高等研究院,广东 深圳 518055
3. 南方科技大学 深港微电子学院,广东 深圳 518055
Review of environmental heavy metal detection based on microelectrode arrays
Yiming YU1(),Wei CAI1,2,*(),Yi LI3,Wei FU3,Xu YAO1,Tingyi ZHANG1,Shangqi DIAO1,Dan LI1,Songqing LIN1,Yongshun CHEN1
1. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2. Advanced Institute of Ocean Research, Southern University of Science and Technology, Shenzhen 518055, China
3. School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
 全文: PDF(2022 KB)   HTML
摘要:

微电极阵列相较于常规电极具有传质速率高、电流密度大、信噪比高等优势,利用微电极阵列分析土壤、河水、湖水等极易受到重金属污染的环境样品是重金属检测领域的研究热点. 采用微纳加工工艺构建不同结构的微电极阵列,结合电化学伏安技术,能够提升对锌、镉、铅、铜等重金属的检测性能. 通过优化电极结构和修饰敏感材料如汞膜、纳米金、石墨烯、金属有机框架等,可以进一步降低重金属检出限并拓宽线性范围. 系统地综述微电极阵列的独特结构与修饰材料在重金属定性和定量分析方面的性能,及其在实际环境样品检测中的抗干扰能力.

关键词: 微电极阵列微纳加工重金属电化学分析伏安法    
Abstract:

Compared with conventional electrodes, microelectrode arrays have the advantages of high mass transfer rate, high current density and high signal-to-noise ratio. The analysis of environmental samples (such as soil, river and lake water) which are highly susceptible to heavy metal contamination using microelectrode arrays is a hot research spot in the field of heavy metal detection. The detection performance of heavy metals such as zinc, cadmium, lead and copper could be enhanced by utilizing the micro-nano processing technology to construct various structures of microelectrode arrays and combining with the electrochemical voltammetry technology. By optimizing electrode structures and modifying them with sensitive materials like mercury films, gold nanoparticles, graphene and metal-organic frameworks, the detection limits of heavy metals can be further reduced, and the linear ranges can be broadened. The performance of the unique structures and the modified materials of microelectrode arrays in qualitative and quantitative analysis of heavy metals, and the anti-interference capabilities of microelectrode arrays in the detection of real environmental samples were systematically summarized.

Key words: microelectrode array    micro-nano processing    heavy metal    electrochemical analysis    voltammetry
收稿日期: 2025-01-14 出版日期: 2025-12-15
:  TP 393  
基金资助: 国家重点研发计划资助项目(2022YFC3104700);广东省珠江人才计划资助项目(2021QN02H436);深圳市自然科学基金资助项目(JCYJ20220530113013030).
通讯作者: 蔡巍     E-mail: 12332257@mail.sustech.edu.cn;caiw@sustech.edu.cn
作者简介: 于翼铭(2000—),男,硕士生,从事面向重金属检测的微电极阵列研究. orcid.org/0009-0004-3274-5151. E-mail:12332257@mail.sustech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
于翼铭
蔡巍
李毅
付玮
姚旭
张停毅
刁尚祺
李丹
林松清
陈永顺

引用本文:

于翼铭,蔡巍,李毅,付玮,姚旭,张停毅,刁尚祺,李丹,林松清,陈永顺. 基于微电极阵列的环境重金属检测研究进展[J]. 浙江大学学报(工学版), 2026, 60(1): 217-230.

Yiming YU,Wei CAI,Yi LI,Wei FU,Xu YAO,Tingyi ZHANG,Shangqi DIAO,Dan LI,Songqing LIN,Yongshun CHEN. Review of environmental heavy metal detection based on microelectrode arrays. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 217-230.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.021        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/217

伏安法施加电位曲线电流-电压特性曲线C/(mol·L?1)
线性扫描伏安法
(linear sweep voltammetry, LSV)
10?2~10?6
差分脉冲伏安法
(differential pulse voltammetry, DPV)
10?4~10?7
方波伏安法
(square wave voltammetry, SWV)
10?4~10?8
阳极溶出伏安法
(anodic stripping voltammetry, ASV)
10?6~10?11
吸附溶出伏安法
(adsorptive stripping voltammetry, AdSV)
10?6~10?12
表 1  用于痕量重金属分析的主要伏安技术及其浓度测量范围[32]
图 1  不同电极间距下微电极阵列的扩散机制
图 2  微电极阵列中不同形状微电极的表面扩散模型和稳态电流方程[45]
国家单位研究团队国家单位研究团队
德国亚琛应用技术大学Huck团队菲律宾迪利曼大学Luna团队
瑞士日内瓦大学Mary-Lou团队日本东京工业大学Tokuda团队
希腊雅典大学Kokkinos团队新加坡南洋理工大学Miao团队
斯洛伐克斯洛伐克理工大学Rehacek团队中国中国科学院空天信息创新研究院边超教授团队
英国牛津大学Ordeig团队中国北京工业大学刘旭教授团队
爱尔兰廷德尔国家研究所Daly团队中国中国科学院烟台海岸带研究所潘大为教授团队
波兰斯克罗多夫斯卡大学Grca团队中国浙江大学王平教授团队
法国波城大学Authier团队中国宁波大学金庆辉教授团队
埃塞俄比亚哈瓦萨大学Washe团队中国哈尔滨工业大学闫永达教授团队
美国中佛罗里达大学White团队中国南方科技大学笔者团队
美国麻省理工学院Kanhere团队
表 2  用于环境重金属检测的微电极阵列相关研究团队
图 3  金微电极阵列传感器芯片[55]
图 4  一次性铋微电极阵列的制作过程[70]
图 5  基于鲨鱼嗅觉受体设计的微柱电极阵列[85]
图 6  基于氮掺杂类金刚石碳的微电极阵列[90]
图 7  基于MEMS工艺的多参数检测集成芯片[98]
图 8  三角形金微电极阵列[113]
文献工作电极材料应用环境检测物质nmdm/μmLRρ/(μg·L?1)LOD/(μg·L?1)
[55]金/汞配制溶液锌/镉/铅/铜4×410—/0.3~200/1.0~200/
1.0~300
—/0.1/0.5/0.1
[56]金/汞海水锌/镉/铅/铜19×102.519.6/5.6/10.3/12.7
[58]金/汞配制溶液锌/铅/铜4×450/3010~505.5/8.9/8.6
[59]金/汞配制溶液锌/镉/铅/铜8×81010~200/1~100/
5~100/10~200
3/0.3/1/2
[63]铱/汞配制溶液锌/镉/铅33×3331/0.2/0.5
[63]铱/汞配制溶液锌/镉/铅42×4260.5/0.1/0.1
[64]铱/汞海水锌/镉/铅10×1051×104~5×104630/600/590
[70]湖水12×12102~150.7
[71]金/铋饮用水20×20520~1007
[72]铱/汞配制溶液30×3050.5~15
[73]金/铋螃蟹样品5~500.86
[74]配制溶液2510
[75]河水8×8131~101.3
[76]鱼类样品3.7~80.45
[77]碳/铋/聚溴甲酚紫废水0~2500.036
[82]铂/汞配制溶液32×32510~100
[83]铱/汞河水10×1050.2~20.05
[84]铱/汞配制溶液50.1~500.1
[85]配制溶液2410010~1000.8
[86]配制溶液505~1000.82
[87]配制溶液205~110.60.41
[88]碳/镍纳米颗粒配制溶液2~1001
[89]自来水6690.1~500.093
[90]类金刚石/铋配制溶液5062534.1~24.82.5
[95]自来水5641220~1005
[98]铂/金纳米颗粒配制溶液500~6002.33
[99]金/金纳米颗粒河水112100.5~2000.2
[100]河水30050.1~3 0000.1
[103]配制溶液25620676~20 000176.8
[104]配制溶液256510~2003.2
[106]饮用水241~200.590.134
[108]铱/汞湖水5×20555~8255.5
[110]铱/汞配制溶液564102~200.5
[113]河水792180.04~40.80.016
表 3  微电极阵列在重金属检测方面的应用及参考文献
1 RAHMAN Z, SINGH V P The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview[J]. Environmental Monitoring and Assessment, 2019, 191 (7): 419
doi: 10.1007/s10661-019-7528-7
2 VAREDA J P, VALENTE A J M, DURÃES L Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review[J]. Journal of Environmental Management, 2019, 246: 101- 118
doi: 10.1016/j.jenvman.2019.05.126
3 TIMOTHY N, WILLIAMS E T Environmental pollution by heavy metal: an overview[J]. International Journal of Environmental Chemistry, 2019, 3 (2): 72- 82
doi: 10.11648/j.ijec.20190302.14
4 BABY J, RAJ J S, BIBY E T, et al Toxic effect of heavy metals on aquatic environment[J]. International Journal of Biological and Chemical Sciences, 2010, 4 (4): 939- 952
5 UDDIN M M, ZAKEEL M C M, ZAVAHIR J S, et al Heavy metal accumulation in rice and aquatic plants used as human food: a general review[J]. Toxics, 2021, 9 (12): 360
doi: 10.3390/toxics9120360
6 DURUIBE J O, OGWUEGBU M O C, EGWURUGWU J N Heavy metal pollution and human biotoxic effects[J]. International Journal of Physical Sciences, 2007, 2 (5): 112- 118
7 VARDHAN K H, KUMAR P S, PANDA R C A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives[J]. Journal of Molecular Liquids, 2019, 290: 111197
doi: 10.1016/j.molliq.2019.111197
8 HASSAAN M A, EL NEMR A, MADKOUR F F Environmental assessment of heavy metal pollution and human health risk[J]. American Journal of Water Science and Engineering, 2016, 2 (3): 14- 19
9 GUMPU M B, SETHURAMAN S, KRISHNAN U M, et al A review on detection of heavy metal ions in water: an electrochemical approach[J]. Sensors and Actuators B: Chemical, 2015, 213: 515- 533
doi: 10.1016/j.snb.2015.02.122
10 CUARTERO M Electrochemical sensors for in-situ measurement of ions in seawater[J]. Sensors and Actuators B: Chemical, 2021, 334: 129635
doi: 10.1016/j.snb.2021.129635
11 WEBER S G Signal-to-noise ratio in microelectrode-array-based electrochemical detectors[J]. Analytical Chemistry, 1989, 61 (4): 295- 302
doi: 10.1021/ac00179a004
12 FLEISCHMANN M, PONS S The behavior of microelectrodes[J]. Analytical Chemistry, 1987, 59 (24): 1391A- 1399A
13 HUANG X J, O’MAHONY A M, COMPTON R G Microelectrode arrays for electrochemistry: approaches to fabrication[J]. Small, 2009, 5 (7): 776- 788
doi: 10.1002/smll.200801593
14 HOOGERWERF A C, WISE K D A three-dimensional microelectrode array for chronic neural recording[J]. IEEE Transactions on Biomedical Engineering, 1994, 41 (12): 1136- 1146
doi: 10.1109/10.335862
15 HOWELL K A, ACHTERBERG E P, BRAUNGARDT C B, et al The determination of trace metals in estuarine and coastal waters using a voltammetric in situ profiling system[J]. Analyst, 2003, 128 (6): 734- 741
doi: 10.1039/b300712j
16 WANG J, BIAN C, LI Y, et al A multi-parameter integrated chip system for water quality detection[J]. International Journal of Modern Physics B, 2019, 33 (7): 1950041
doi: 10.1142/S0217979219500413
17 XU G, LI X, CHENG C, et al Fully integrated battery-free and flexible electrochemical tag for on-demand wireless in situ monitoring of heavy metals[J]. Sensors and Actuators B: Chemical, 2020, 310: 127809
doi: 10.1016/j.snb.2020.127809
18 BEATON A D, SCHAAP A M, PASCAL R, et al Lab-on-chip for in situ analysis of nutrients in the deep sea[J]. ACS Sensors, 2022, 7 (1): 89- 98
doi: 10.1021/acssensors.1c01685
19 DANIEL A, LAËS-HUON A, BARUS C, et al Toward a harmonization for using in situ nutrient sensors in the marine environment[J]. Frontiers in Marine Science, 2020, 6: 773
doi: 10.3389/fmars.2019.00773
20 EVANS E H, PISONERO J, SMITH C M M, et al Atomic spectrometry update: review of advances in atomic spectrometry and related techniques[J]. Journal of Analytical Atomic Spectrometry, 2020, 35 (5): 830- 851
doi: 10.1039/D0JA90015J
21 BIRD C L, KUHN A T Electrochemistry of the viologens[J]. Chemical Society Reviews, 1981, 10 (1): 49- 82
doi: 10.1039/cs9811000049
22 PETROVIC M, FARRÉ M, DE ALDA M L, et al Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples[J]. Journal of Chromatography A, 2010, 1217 (25): 4004- 4017
doi: 10.1016/j.chroma.2010.02.059
23 GREENBERG R R, BODE P, FERNANDES E A D N Neutron activation analysis: a primary method of measurement[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66 (3/4): 193- 241
24 HU Q, YANG G, ZHAO Y, et al Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection[J]. Analytical and Bioanalytical Chemistry, 2003, 375 (6): 831- 835
doi: 10.1007/s00216-003-1828-y
25 COOPER W J, MOEGLING J K, KIEBER R J, et al A chemiluminescence method for the analysis of H2O2 in natural waters[J]. Marine Chemistry, 2000, 70 (1/2/3): 191- 200
26 MALIK L A, BASHIR A, QUREASHI A, et al Detection and removal of heavy metal ions: a review[J]. Environmental Chemistry Letters, 2019, 17 (4): 1495- 1521
doi: 10.1007/s10311-019-00891-z
27 RAMACHANDRAN R, CHEN T W, CHEN S M, et al A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules[J]. Inorganic Chemistry Frontiers, 2019, 6 (12): 3418- 3439
doi: 10.1039/C9QI00602H
28 YANTASEE W, LIN Y, HONGSIRIKARN K, et al Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors[J]. Environmental Health Perspectives, 2007, 115 (12): 1683- 1690
doi: 10.1289/ehp.10190
29 GUPTA V K, GANJALI M R, NOROUZI P, et al Electrochemical analysis of some toxic metals by ion–selective electrodes[J]. Critical Reviews in Analytical Chemistry, 2011, 41 (4): 282- 313
doi: 10.1080/10408347.2011.589773
30 HAN H, PAN D Voltammetric methods for speciation analysis of trace metals in natural waters[J]. Trends in Environmental Analytical Chemistry, 2021, 29: e00119
doi: 10.1016/j.teac.2021.e00119
31 ARIÑO C, BANKS C E, BOBROWSKI A, et al Electrochemical stripping analysis[J]. Nature Reviews Methods Primers, 2022, 2 (1): 62
doi: 10.1038/s43586-022-00143-5
32 BUFFLE J, TERCIER-WAEBER M L Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements[J]. TrAC Trends in Analytical Chemistry, 2005, 24 (3): 172- 191
doi: 10.1016/j.trac.2004.11.013
33 BOND A M Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection: a review[J]. Analyst, 1994, 119 (11): 1R- 21R
doi: 10.1039/an994190001r
34 WIGHTMAN R M Probing cellular chemistry in biological systems with microelectrodes[J]. Science, 2006, 311 (5767): 1570- 1574
doi: 10.1126/science.1120027
35 DRAGAS J, VISWAM V, SHADMANI A, et al In vitro multi-functional microelectrode array featuring 59 760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels[J]. IEEE Journal of Solid-State Circuits, 2017, 52 (6): 1576- 1590
doi: 10.1109/JSSC.2017.2686580
36 JONES I L, LIVI P, LEWANDOWSKA M K, et al The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics[J]. Analytical and Bioanalytical Chemistry, 2011, 399: 2313- 2329
doi: 10.1007/s00216-010-3968-1
37 ORDEIG O, DEL CAMPO J, MUÑOZ F X, et al Electroanalysis utilizing amperometric microdisk electrode arrays[J]. Electroanalysis, 2007, 19 (19/20): 1973- 1986
38 MCINTYRE C C, GRILL W M Finite element analysis of the current-density and electric field generated by metal microelectrodes[J]. Annals of Biomedical Engineering, 2001, 29: 227- 235
doi: 10.1114/1.1352640
39 FORSTER R J Microelectrodes: new dimensions in electrochemistry[J]. Chemical Society Reviews, 1994, 23 (4): 289- 297
doi: 10.1039/cs9942300289
40 DAVIS F, HIGSON S P J. Arrays of microelectrodes: technologies for environmental investigations [J]. Environmental Science: Processes & Impacts, 2013, 15(8): 1477–1489.
41 蔡巍. 水环境重金属检测微传感器及自动分析仪器的研究[D]. 杭州: 浙江大学, 2012.
CAI Wei. Researches on micro electrochemical sensors and automatic analysis instruments for heavy metal detection in aqueous environment [D]. Hangzhou: Zhejiang University, 2012.
42 CAO Z, SHANG H, WANG Y, et al. Mercury-plated iridium-based microelectrode arrays for trace metal detection [C]// 19th International Conference on Electronic Packaging Technology. Shanghai: IEEE, 2018: 1102–1107.
43 ONG C S, NG Q H, LOW S C Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals[J]. Monatshefte Für Chemie-Chemical Monthly, 2021, 152 (7): 705- 723
44 OBIEN M E J, DELIGKARIS K, BULLMANN T, et al Revealing neuronal function through microelectrode array recordings[J]. Frontiers in Neuroscience, 2015, 8: 423
45 ARRIGAN D W M Nanoelectrodes, nanoelectrode arrays and their applications[J]. Analyst, 2004, 129 (12): 1157- 1165
doi: 10.1039/b415395m
46 林明月, 潘大为, 张海云, 等 电化学方法检测海水中铁的研究进展[J]. 环境化学, 2015, 34 (3): 536- 544
LIN Mingyue, PAN Dawei, ZHANG Haiyun, et al Advances in the determination of iron in seawater by electrochemical methods[J]. Environmental Chemistry, 2015, 34 (3): 536- 544
doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
47 GUESHI T, TOKUDA K, MATSUDA H Voltammetry at partially covered electrodes: part I. chronopotentiometry and chronoamperometry at model electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 89 (2): 247- 260
doi: 10.1016/S0022-0728(78)80188-0
48 HEINEMAN W R, KISSINGER P T Analytical electrochemistry: methodology and applications of dynamic techniques[J]. Analytical Chemistry, 1980, 52 (5): 138- 151
doi: 10.1021/ac50055a019
49 SLESZYNSKI N, OSTERYOUNG J, CARTER M Arrays of very small voltammetric electrodes based on reticulated vitreous carbon[J]. Analytical Chemistry, 1984, 56 (2): 130- 135
doi: 10.1021/ac00266a004
50 SUZUKI H Microfabrication of chemical sensors and biosensors for environmental monitoring[J]. Materials Science and Engineering: C, 2000, 12 (1/2): 55- 61
doi: 10.1016/S0928-4931(00)00158-2
51 FLETCHER S, HORNE M D Random assemblies of microelectrodes (RAM™ electrodes) for electrochemical studies[J]. Electrochemistry Communications, 1999, 1 (10): 502- 512
doi: 10.1016/S1388-2481(99)00100-9
52 ORDEIG O, BANKS C E, DAVIES T J, et al The linear sweep voltammetry of random arrays of microdisc electrodes: fitting of experimental data[J]. Journal of Electroanalytical Chemistry, 2006, 592 (2): 126- 130
doi: 10.1016/j.jelechem.2006.05.008
53 NRIAGU J O. Encyclopedia of environmental health [M]. Amsterdam: Elsevier Science, 2011: 801–807.
54 付静. 水环境重金属检测的电化学传感器的研究[D]. 杭州: 浙江大学, 2007.
FU Jing. The research of electrochemical sensors for heavy metals monitoring in water environment [D]. Hangzhou: Zhejiang University, 2007.
55 赵会欣, 万浩, 蔡巍, 等 用于水污染重金属检测的微电极阵列传感器芯片[J]. 浙江大学学报: 工学版, 2013, 47 (6): 984- 989
ZHAO Huixin, WAN Hao, CAI Wei, et al Microelectrode array sensor chip for detection of heavy metals in water pollution[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (6): 984- 989
56 TERCIER-WAEBER M L, CONFALONIERI F, ABDOU M, et al Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals[J]. Chemosphere, 2021, 282: 131014
doi: 10.1016/j.chemosphere.2021.131014
57 CAI W, YU Y, YAO X, et al. Development of a multiparameter sensor chip for in-situ marine ecological monitoring [C]// OCEANS 2024-Singapore. Singapore: IEEE, 2024: 1–4.
58 WAN H, HA D, ZHANG W, et al Design of a novel hybrid sensor with microelectrode array and LAPS for heavy metal determination using multivariate nonlinear calibration[J]. Sensors and Actuators B: Chemical, 2014, 192: 755- 761
doi: 10.1016/j.snb.2013.11.035
59 邹绍芳, 范影乐, 王平 基于微电极阵列的自动环境监测电子舌的设计[J]. 仪器仪表学报, 2007, 28 (9): 1641- 1645
ZOU Shaofang, FAN Yingle, WANG Ping Design of MEA-based electronic tongue for automatic environmental monitoring[J]. Chinese Journal of Scientific Instrument, 2007, 28 (9): 1641- 1645
doi: 10.3321/j.issn:0254-3087.2007.09.020
60 KOUNAVES S P, BUFFLE J Deposition and stripping properties of mercury on iridium electrodes[J]. Journal of the Electrochemical Society, 1986, 133 (12): 2495- 2498
doi: 10.1149/1.2108457
61 KOUNAVES S P, BUFFLE J An iridium-based mercury-film electrode: part I. selection of substrate and preparation[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 216 (1/2): 53- 69
62 WU W, CHEN Z Iridium coating: processes, properties and application: part I[J]. Johnson Matthey Technology Review, 2017, 61 (1): 16- 28
doi: 10.1595/205651317X693606
63 SILVA P R M, EL KHAKANI M A, LE DROGOFF B, et al Mercury-electroplated-iridium microelectrode array based sensors for the detection of heavy metal ultratraces: optimization of the mercury charge[J]. Sensors and Actuators B: Chemical, 1999, 60 (2/3): 161- 167
64 CAO Z, SHANG H, WANG Y, et al. Gel-integrated mercury-plated microelectrode arrays for trace metal detection [C]// International Conference on Electronics Packaging. Niigata: IEEE, 2019: 279–282.
65 CHARKIEWICZ A E, OMELJANIUK W J, NOWAK K, et al Cadmium toxicity and health effects: a brief summary[J]. Molecules, 2023, 28 (18): 6620
doi: 10.3390/molecules28186620
66 GENCHI G, SINICROPI M S, LAURIA G, et al The effects of cadmium toxicity[J]. International Journal of Environmental Research and Public Health, 2020, 17 (11): 3782
doi: 10.3390/ijerph17113782
67 YAN L J, ALLEN D C Cadmium-induced kidney injury: oxidative damage as a unifying mechanism[J]. Biomolecules, 2021, 11 (11): 1575
doi: 10.3390/biom11111575
68 BALALI-MOOD M, NASERI K, TAHERGORABI Z, et al Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic[J]. Frontiers in Pharmacology, 2021, 12: 643972
doi: 10.3389/fphar.2021.643972
69 SUWAZONO Y, KIDO T, NAKAGAWA H, et al Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure[J]. Biomarkers, 2009, 14 (2): 77- 81
doi: 10.1080/13547500902730698
70 KOKKINOS C, ECONOMOU A, RAPTIS I Microfabricated disposable lab-on-a-chip sensors with integrated bismuth microelectrode arrays for voltammetric determination of trace metals[J]. Analytica Chimica Acta, 2012, 710: 1- 8
doi: 10.1016/j.aca.2011.10.048
71 BAHINTING S E D, ROLLON A P, GARCIA-SEGURA S, et al Bismuth film-coated gold ultramicroelectrode array for simultaneous quantification of Pb(II) and Cd(II) by square wave anodic stripping voltammetry[J]. Sensors, 2021, 21 (5): 1811
doi: 10.3390/s21051811
72 SILVA P R M, EL KHAKANI M A, CHAKER M, et al Development of Hg-electroplated-iridium based microelectrode arrays for heavy metal traces analysis[J]. Analytica Chimica Acta, 1999, 385 (1/2/3): 249- 255
73 XU Y, ZHANG W, SHI J, et al Microfabricated interdigitated Au electrode for voltammetric determination of lead and cadmium in Chinese mitten crab (Eriocheir sinensis)[J]. Food Chemistry, 2016, 201: 190- 196
doi: 10.1016/j.foodchem.2016.01.078
74 NASCIMENTO V B, AUGELLI M A, PEDROTTI J J, et al Arrays of gold microelectrodes made from split integrated circuit chips[J]. Electroanalysis, 1997, 9 (4): 335- 339
doi: 10.1002/elan.1140090415
75 CUGNET C, ZAOUAK O, RENÉ A, et al A novel microelectrode array combining screen-printing and femtosecond laser ablation technologies: development, characterization and application to cadmium detection[J]. Sensors and Actuators B: Chemical, 2009, 143 (1): 158- 163
doi: 10.1016/j.snb.2009.07.059
76 OLIVEIRA M, VISWANATHAN S, MORAIS S, et al Development of polyaniline microarray electrodes for cadmium analysis[J]. Chemical Papers, 2012, 66 (10): 891- 898
77 BIRARA A, WASHE A P, BAYEH Y, et al Simultaneous quantification of Cd(II) and Pb(II) by bismuth/poly (bromocresol purple) modified screen-printed carbon-electrode in wastewater[J]. International Journal of Electrochemical Science, 2024, 19 (1): 100431
doi: 10.1016/j.ijoes.2023.100431
78 AKHTAR N, SYAKIR ISHAK M I, BHAWANI S A, et al Various natural and anthropogenic factors responsible for water quality degradation: a review[J]. Water, 2021, 13 (19): 2660
doi: 10.3390/w13192660
79 REHMAN K, FATIMA F, WAHEED I, et al Prevalence of exposure of heavy metals and their impact on health consequences[J]. Journal of Cellular Biochemistry, 2018, 119 (1): 157- 184
doi: 10.1002/jcb.26234
80 KIM H C, JANG T W, CHAE H J, et al Evaluation and management of lead exposure[J]. Annals of Occupational and Environmental Medicine, 2015, 27 (1): 30
doi: 10.1186/s40557-015-0085-9
81 KOUNAVES S P, DENG W, HALLOCK P R, et al Iridium-based ultramicroelectrode array fabricated by microlithography[J]. Analytical Chemistry, 1994, 66 (3): 418- 423
doi: 10.1021/ac00075a017
82 UHLIG A, PAESCHKE M, SCHNAKENBERG U, et al Chip-array electrodes for simultaneous stripping analysis of trace metals[J]. Sensors and Actuators B: Chemical, 1995, 25 (1/2/3): 899- 903
83 BELMONT C, TERCIER M L, BUFFLE J, et al Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability[J]. Analytica Chimica Acta, 1996, 329 (3): 203- 214
doi: 10.1016/0003-2670(96)00116-X
84 DROGOFF B L, EL KHAKANI M A, SILVA P R M, et al Effect of the microelectrode geometry on the diffusion behavior and the electroanalytical performance of Hg-electroplated iridium microelectrode arrays intended for the detection of heavy metal traces[J]. Electroanalysis, 2001, 13 (18): 1491- 1496
doi: 10.1002/1521-4109(200112)13:18<1491::AID-ELAN1491>3.0.CO;2-Z
85 WANG N, KANHERE E, TRIANTAFYLLOU M S, et al. Shark-inspired MEMS chemical sensor with epithelium-like micropillar electrode array for lead detection [C]// Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems. Anchorage: IEEE, 2015: 1464–1467.
86 戴金莹, 尹加文, 郜晚蕾, 等 重金属检测微纳传感器芯片批量制备与测试[J]. 微纳电子技术, 2021, 58 (4): 359- 364
DAI Jinying, YIN Jiawen, GAO Wanlei, et al Batch preparation and testing of micro-nano sensor chips for heavy metal detection[J]. Micronanoelectronic Technology, 2021, 58 (4): 359- 364
87 SIQUEIRA G P, DE FARIA L V, ROCHA R G, et al Nanoporous gold microelectrode arrays using microchips: a highly sensitive and cost-effective platform for electroanalytical applications[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116880
doi: 10.1016/j.jelechem.2022.116880
88 TU Y, LIN Y, YANTASEE W, et al Carbon nanotubes based nanoelectrode arrays: fabrication, evaluation, and application in voltammetric analysis[J]. Electroanalysis, 2005, 17 (1): 79- 84
doi: 10.1002/elan.200403122
89 GUPTA P, RAHM C E, JIANG D, et al Parts per trillion detection of heavy metals in as-is tap water using carbon nanotube microelectrodes[J]. Analytica Chimica Acta, 2021, 1155: 338353
doi: 10.1016/j.aca.2021.338353
90 REHACEK V, HOTOVY I, VOJS M Bismuth-coated diamond-like carbon microelectrodes for heavy metals determination[J]. Sensors and Actuators B: Chemical, 2007, 127 (1): 193- 197
doi: 10.1016/j.snb.2007.07.031
91 REHACEK V, SHTEREVA K, NOVOTNY I, et al Mercury-plated thin film ITO microelectrode array for analysis of heavy metals[J]. Vacuum, 2005, 80 (1/2/3): 132- 136
92 AMEH T, SAYES C M The potential exposure and hazards of copper nanoparticles: a review[J]. Environmental Toxicology and Pharmacology, 2019, 71: 103220
doi: 10.1016/j.etap.2019.103220
93 DE ROMAÑA D L, OLIVARES M, UAUY R, et al Risks and benefits of copper in light of new insights of copper homeostasis[J]. Journal of Trace Elements in Medicine and Biology, 2011, 25 (1): 3- 13
doi: 10.1016/j.jtemb.2010.11.004
94 FORD E S Serum copper concentration and coronary heart disease among US adults[J]. American Journal of Epidemiology, 2000, 151 (12): 1182- 1188
doi: 10.1093/oxfordjournals.aje.a010168
95 NOLAN M A, KOUNAVES S P Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry[J]. Analytical Chemistry, 1999, 71 (16): 3567- 3573
doi: 10.1021/ac990126i
96 WU S, PAN D, YU Z, et al Gold microelectrode arrays based electrode for determination of trace copper in seawater[J]. Asian Journal of Chemistry, 2014, 26 (9): 2741- 2744
doi: 10.14233/ajchem.2014.16454
97 OROZCO J, FERNÁNDEZ-SÁNCHEZ C, JIMÉNEZ-JORQUERA C Underpotential deposition-anodic stripping voltammetric detection of copper at gold nanoparticle-modified ultramicroelectrode arrays[J]. Environmental Science & Technology, 2008, 42 (13): 4877- 4882
98 WU Z, WANG J, BIAN C, et al A MEMS-based multi-parameter integrated chip and its portable system for water quality detection[J]. Micromachines, 2020, 11 (1): 63
doi: 10.3390/mi11010063
99 WANG J, BIAN C, TONG J, et al Microsensor chip integrated with gold nanoparticles-modified ultramicroelectrode array for improved electroanalytical measurement of copper ions[J]. Electroanalysis, 2013, 25 (7): 1713- 1721
doi: 10.1002/elan.201300019
100 ZHANG J, WU S, ZHANG F, et al Improved microelectrode array electrode design for heavy metal detection[J]. Chemosensors, 2024, 12 (4): 51
doi: 10.3390/chemosensors12040051
101 QI H, HUANG X, WU J, et al A disposable aptasensor based on a gold-plated coplanar electrode array for on-site and real-time determination of Cu2+[J]. Analytica Chimica Acta, 2021, 1183: 338991
doi: 10.1016/j.aca.2021.338991
102 DALY R, NARAYAN T, SHAO H, et al Platinum-based interdigitated micro-electrode arrays for reagent-free detection of copper[J]. Sensors, 2021, 21 (10): 3544
doi: 10.3390/s21103544
103 HOOD S J, KAMPOURIS D K, KADARA R O, et al Why ‘the bigger the better’ is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI)[J]. Analyst, 2009, 134 (11): 2301- 2305
doi: 10.1039/b911507b
104 ORDEIG O, BANKS C E, DEL CAMPO J, et al Trace detection of mercury(II) using gold ultra-microelectrode arrays[J]. Electroanalysis, 2006, 18 (6): 573- 578
105 WU Z, CUI T Shrink-induced microelectrode arrays for trace mercury ions detection[J]. IEEE Sensors Journal, 2019, 19 (7): 2435- 2441
doi: 10.1109/JSEN.2018.2887269
106 方卓. 基于纳米切片法的超微电极制备及其性能测试研究[D]. 哈尔滨: 哈尔滨工业大学, 2024.
FANG Zhuo. Research on fabrication and performance testing of ultramicroelectrodes based on nanoskiving method [D]. Harbin: Harbin Institute of Technology, 2024.
107 BJØRKLUND G, CHARTRAND M S, AASETH J Manganese exposure and neurotoxic effects in children[J]. Environmental Research, 2017, 155: 380- 384
doi: 10.1016/j.envres.2017.03.003
108 TERCIER-WAEBER M L, BELMONT-HÉBERT C, BUFFLE J Real-time continuous Mn(II) monitoring in lakes using a novel voltammetric in situ profiling system[J]. Environmental Science & Technology, 1998, 32 (10): 1515- 1521
109 RIZWAN M, USMAN K, ALSAFRAN M Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health[J]. Chemosphere, 2024, 357: 142028
doi: 10.1016/j.chemosphere.2024.142028
110 WANG J, WANG J, ADENIYI W K, et al Adsorptive stripping analysis of trace nickel at iridium-based ultramicroelectrode arrays[J]. Electroanalysis, 2000, 12 (1): 44- 47
doi: 10.1002/(SICI)1521-4109(20000101)12:1<44::AID-ELAN44>3.0.CO;2-4
111 XIAO T, GUHA J, BOYLE D, et al Naturally occurring thallium: a hidden geoenvironmental health hazard?[J]. Environment International, 2004, 30 (4): 501- 507
doi: 10.1016/j.envint.2003.10.004
112 TATSI K, TURNER A, HANDY R D, et al The acute toxicity of thallium to freshwater organisms: implications for risk assessment[J]. Science of the Total Environment, 2015, 536: 382- 390
doi: 10.1016/j.scitotenv.2015.06.069
[1] 方灏航,刘玲玲,江阿灿,许丰,张长瑞,金航,高强,林彬,陈松月,孙道恒. 基于柔性印刷微电极阵列的心肌场电位与传导监测[J]. 浙江大学学报(工学版), 2025, 59(8): 1590-1597.
[2] 魏鑫伟, 高庆, 苏凯麒, 秦臻, 潘宇祥, 贺永, 王平. 结合组织工程支架的三维心肌细胞传感器[J]. 浙江大学学报(工学版), 2018, 52(7): 1415-1422.
[3] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1214-1220.
[4] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2432-2438.
[5] 李雅卓, 王广伟, 金建余, 蔡佩君, 王晓萍. 两电极体系新型全固态电极特性分析与应用[J]. 浙江大学学报(工学版), 2014, 48(8): 1517-1521.
[6] 蔡佩君, 邓之银, 王晓萍. 基于两电极体系检测水中微量汞[J]. J4, 2014, 48(2): 297-302.
[7] 符成龙,麻红磊,池涌,严建华,倪明江. 热水解处理制革污泥过程中总Cr的转移与稳定性研究[J]. J4, 2013, 47(9): 1631-1636.
[8] 赵会欣, 万浩, 蔡巍, 哈达, 王平. 用于水污染重金属检测的微电极阵列传感器芯片[J]. J4, 2013, 47(6): 984-989.
[9] 王勤, 严建华, 潘新潮, 池涌, 高飞. 利用热等离子体熔融垃圾焚烧飞灰[J]. J4, 2011, 45(1): 141-145.
[10] 吴丹, 封洲燕, 王静. 微电极阵列神经元锋电位信号的去噪方法[J]. J4, 2010, 44(1): 104-110.
[11] 胡卫军 蔡华 李毅 李蓉 王平 杨国光. 基于微透镜阵列的重金属离子阵列传感器研究[J]. J4, 2008, 42(3): 517-521.
[12] 张夏宾 王晓萍 田师一 梁捷. 新型伏安型多频脉冲电子舌及其应用[J]. J4, 2008, 42(10): 1706-1709.
[13] 严建华 祝红梅 蒋旭光 池涌 岑可法. 医疗废物焚烧中Cd/Cu/Pb/Zn的分布研究[J]. J4, 2008, 42(10): 1812-1816.
[14] 王银瓶 潘跃峰 李毅 邹绍芳 胡卫军 王平. 海水痕量重金属元素现场自动识别技术[J]. J4, 2007, 41(2): 230-235.
[15] 孙春燕 石学根 魏幼璋 杨肖娥 荆延德. 汞污染对植物品质指标的影响[J]. J4, 2007, 41(12): 2087-2092.