机械工程、能源工程 |
|
|
|
|
基于柔性印刷微电极阵列的心肌场电位与传导监测 |
方灏航1( ),刘玲玲1,江阿灿1,许丰1,张长瑞1,金航1,高强2,林彬2,3,陈松月1,*( ),孙道恒1 |
1. 厦门大学 萨本栋微米纳米科学技术研究院,福建 厦门 361102 2. 广东省人民医院,广东 广州 510080 3. 广东源心再生医学有限公司,广东 佛山 528231 |
|
Myocardial field potential and conduction monitoring based on flexible printed microelectrode array |
Haohang FANG1( ),Lingling LIU1,Acan JIANG1,Feng XU1,Changrui ZHANG1,Hang JIN1,Qiang GAO2,Bin LIN2,3,Songyue CHEN1,*( ),Daoheng SUN1 |
1. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China 2. Guangdong Provincial People’s Hospital, Guangzhou 510080, China 3. Guangdong Beating Origin Regenerative Medicine Limited Company, Foshan 528231, China |
引用本文:
方灏航,刘玲玲,江阿灿,许丰,张长瑞,金航,高强,林彬,陈松月,孙道恒. 基于柔性印刷微电极阵列的心肌场电位与传导监测[J]. 浙江大学学报(工学版), 2025, 59(8): 1590-1597.
Haohang FANG,Lingling LIU,Acan JIANG,Feng XU,Changrui ZHANG,Hang JIN,Qiang GAO,Bin LIN,Songyue CHEN,Daoheng SUN. Myocardial field potential and conduction monitoring based on flexible printed microelectrode array. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1590-1597.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.005
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1590
|
1 |
DESTERE A, MERINO D, LAVRUT T, et al Drug-induced cardiac toxicity and adverse drug reactions, a narrative review[J]. Therapie, 2024, 79 (2): 161- 172
doi: 10.1016/j.therap.2023.10.008
|
2 |
HERRMANN J Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia[J]. Nature Reviews Cardiology, 2020, 17 (8): 474- 502
doi: 10.1038/s41569-020-0348-1
|
3 |
PANG L, SAGER P, YANG X, et al Workshop report FDA workshop on improving cardiotoxicity assessment with human-relevant platforms[J]. Circulation Research, 2019, 125 (9): 855- 867
doi: 10.1161/CIRCRESAHA.119.315378
|
4 |
CARDINALE D, CIPOLLA C M Assessment of cardiotoxicity with cardiac biomarkers in cancer patients[J]. Herz, 2011, 36 (4): 325- 332
doi: 10.1007/s00059-011-3453-4
|
5 |
SHARMA A, MCKEITHAN W L, SERRANO R, et al Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity[J]. Nature Protocols, 2018, 13 (12): 3018- 3041
doi: 10.1038/s41596-018-0076-8
|
6 |
YANG X L, PABON L, MURRY C E Engineering adolescence maturation of human pluripotent stem cell-derived cardiomyocytes[J]. Circulation Research, 2014, 114 (3): 511- 523
doi: 10.1161/CIRCRESAHA.114.300558
|
7 |
ZHAN H Q, XIA L, SHOU G F, et al Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study[J]. Journal of Zhejiang University: Science B, 2014, 15 (3): 225- 242
doi: 10.1631/jzus.B1300156
|
8 |
HUEBSCH N, CHARREZ B, NEIMAN G, et al Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips[J]. Nature Biomedical Engineering, 2022, 6 (4): 372- 388
doi: 10.1038/s41551-022-00884-4
|
9 |
HAN B, TREW M L, ZGIERSKI-JOHNSTON C M Cardiac conduction velocity, remodeling and arrhythmogenesis[J]. Cells, 2021, 10 (11): 2923
doi: 10.3390/cells10112923
|
10 |
GAO J, LIAO C Y, LIU S J, et al Nanotechnology: new opportunities for the development of patch-clamps[J]. Journal of Nanobiotechnology, 2021, 19 (1): 97
doi: 10.1186/s12951-021-00841-4
|
11 |
ST-PIERRE F, MARSHALL J D, YANG Y, et al High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor[J]. Nature Neuroscience, 2014, 17 (6): 884- 889
doi: 10.1038/nn.3709
|
12 |
MILLER E W, LIN J Y, FRADY E P, et al Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (6): 2114- 2119
|
13 |
O'SHEA C, WINTER J, KABIR S N, et al High resolution optical mapping of cardiac electrophysiology in pre-clinical models[J]. Scientific Data, 2022, 9 (1): 135
doi: 10.1038/s41597-022-01253-1
|
14 |
HELLWEG L, EDENHOFER A, BARCK L, et al A general method for the development of multicolor biosensors with large dynamic ranges[J]. Nature Chemical Biology, 2023, 19 (9): 1147- 1157
doi: 10.1038/s41589-023-01350-1
|
15 |
JOSHI J, RUBART M, ZHU W Q Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine[J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 466
doi: 10.3389/fbioe.2019.00466
|
16 |
KIM C K, ADHIKARI A, DEISSEROTH K Integration of optogenetics with complementary methodologies in systems neuroscience[J]. Nature Reviews Neuroscience, 2017, 18 (4): 222- 235
doi: 10.1038/nrn.2017.15
|
17 |
TRANTIDOU T, TERRACCIANO C M, KONTZIAMPASIS D, et al Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials[J]. Scientific Reports, 2015, 5 (1): 11067
doi: 10.1038/srep11067
|
18 |
GUZMAN E, CHENG Z W, HANSMA P K, et al Extracellular detection of neuronal coupling[J]. Scientific Reports, 2021, 11 (1): 14733
doi: 10.1038/s41598-021-94282-6
|
19 |
XU L Q, HU C X, HUANG Q, et al Trends and recent development of the microelectrode arrays (MEAs)[J]. Biosensors and Bioelectronics, 2021, 175: 112854
doi: 10.1016/j.bios.2020.112854
|
20 |
KARUMBAIAH L, NORMAN S E, RAJAN N B, et al The upregulation of specific interleukin (IL) receptor antagonists and paradoxical enhancement of neuronal apoptosis due to electrode induced strain and brain micromotion[J]. Biomaterials, 2012, 33 (26): 5983- 5996
doi: 10.1016/j.biomaterials.2012.05.021
|
21 |
RIBEIRO A J S, ANG Y S, FU J D, et al Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (41): 12705- 12710
|
22 |
BOZKURT A, LAL A Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system[J]. Sensors and Actuators A: Physical, 2011, 169 (1): 89- 97
doi: 10.1016/j.sna.2011.05.015
|
23 |
CHOI J S, LEE H J, RAJARAMAN S, et al Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces[J]. Biosensors and Bioelectronics, 2021, 171: 112687
doi: 10.1016/j.bios.2020.112687
|
24 |
BOEHLER C, CARLI S, FADIGA L, et al Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics[J]. Nature Protocols, 2020, 15 (11): 3557- 3578
doi: 10.1038/s41596-020-0389-2
|
25 |
LIN B, LIN X M, STACHEL M, et al Culture in glucose-depleted medium supplemented with fatty acid and 3, 3′, 5-Triiodo-L-Thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes[J]. Frontiers in Endocrinology, 2017, 8: 253
doi: 10.3389/fendo.2017.00253
|
26 |
ZHU H Q, SCHARNHORST K S, STIEG A Z, et al Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system[J]. Scientific Reports, 2017, 7 (1): 43210
doi: 10.1038/srep43210
|
27 |
SIRENKO O, CRITTENDEN C, CALLAMARAS N, et al Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells[J]. Journal of Biomolecular Screening, 2013, 18 (1): 39- 53
doi: 10.1177/1087057112457590
|
28 |
KITAGUCHI T, MORIYAMA Y, TANIGUCHI T, et al CSAHi study: detection of drug-induced ion channel/receptor responses, QT prolongation, and arrhythmia using multi-electrode arrays in combination with human induced pluripotent stem cell-derived cardiomyocytes[J]. Journal of Pharmacological and Toxicological Methods, 2017, 85: 73- 81
doi: 10.1016/j.vascn.2017.02.001
|
29 |
CLEMENTS M, THOMAS N High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays[J]. Toxicological Sciences, 2014, 140 (2): 445- 461
doi: 10.1093/toxsci/kfu084
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|