Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2384-2392    DOI: 10.3785/j.issn.1008-973X.2024.11.020
土木工程、交通工程     
陡坡段穿越溶洞桩基竖向承载特性离心试验
李宇杰1(),冯忠居1,*(),何静斌2,张聪1,王思琦1
1. 长安大学 公路学院,陕西 西安 710064
2. 中国电建集团西北勘测设计研究院有限公司,陕西 西安 710064
Centrifugal test on vertical load bearing characteristic of pile foundation crossing karst cave in steep sloping area
Yujie LI1(),Zhongju FENG1,*(),Jingbin HE2,Cong ZHANG1,Siqi WANG1
1. School of Highway, Chang’an University, Xi’an 710064, China
2. China Electric Construction Group Northwest Survey and Design Institute Company, Xi’an 710064, China
 全文: PDF(1966 KB)   HTML
摘要:

为了研究陡坡段桥梁桩基穿越溶洞时的竖向承载特性,利用离心模型试验,研究陡坡坡度一定时,桩顶竖向荷载作用下溶洞高度变化对桩基础荷载-沉降曲线、桩基极限承载力、桩身轴力及桩侧阻力的影响,给出影响桩基竖向承载特性的关键参数. 结果表明,在桩长及桩基入岩总深度一定的情况下,桩基竖向极限承载力随溶洞高度的增大而减小,极限承载力减幅随溶洞高度的增大而增大. 当洞高小于1.2倍桩径时,极限承载力的减幅不明显. 当洞高大于2.4倍桩径时,极限承载力的减幅显著增大. 桩身轴力的衰减速度在粉质黏土层内较小,在持力层内较大,在溶洞范围内基本不衰减. 当洞高大于2.4倍桩径时,持力层范围内的轴力衰减幅度显著增大. 桩侧阻力在持力层内显著大于上部岩土层,在溶洞范围内几乎为零. 随着溶洞高度的增大,桩基础竖向极限承载力中桩侧阻力的占比逐渐减小,当洞高大于2.4倍桩径时,桩侧阻力减小了65.5%,桩基由摩擦桩逐渐向端承桩转化.

关键词: 陡坡岩溶桥梁桩基离心试验承载特性    
Abstract:

Centrifugal model tests were used to analyze the effects of cave height changes when the foundation slope is certain under the vertical load at the pile top on the load-settlement curve of the pile foundation, the ultimate bearing capacity of the pile foundation, the pile axial force and the pile side resistance in order to analyze the vertical bearing characteristics of bridge pile foundations crossing the karst cave in the steep slope area. The key parameters affecting the vertical bearing characteristics of the pile foundation were given. Results show that the vertical ultimate bearing capacity of pile foundation decreases with the increase of karst cave height, and the decrease of ultimate bearing capacity increases with the increase of karst cave height under a certain pile length and total depth of the pile foundation into the rock. The decrease of ultimate bearing capacity is not obvious when the karst cave height is less than 1.2 times the pile diameter. The decrease of ultimate bearing capacity increases significantly when the karst cave height is larger than 2.4 times the pile diameter. The decay rate of pile axial force is slower in the pulverised clay layer, faster in the bearing stratum, and does not decay in the range of the karst cave. The decay rate of axial force in the range of the bearing stratum increases significantly after the karst cave height is larger than 2.4 times the pile diameter. The pile side resistance in the holding layer is significantly larger than that in the upper rock and soil layers, and zero in the karst cave. The proportion of pile side resistance in the vertical ultimate bearing capacity of pile foundation gradually decreases as the karst cave height increases. The pile side resistance is reduced by 65.5% when the cave height is larger than 2.4 times the pile diameter, and the pile foundation is gradually transformed from a friction pile to an end-bearing pile.

Key words: steep slope    karst    bridge pile foundation    centrifugal test    load-bearing characteristic
收稿日期: 2023-08-24 出版日期: 2024-10-23
CLC:  U 443  
基金资助: 国家自然科学基金青年科学基金资助项目(4190070568);国家重点研发计划资助项目(2018YFC1504801-04).
通讯作者: 冯忠居     E-mail: lyjie2022@163.com;ysf@gl.chd.edu.cn
作者简介: 李宇杰(1993—),女,博士生,从事桥梁桩基工程的研究. orcid.org/0000-0003-0903-8868. E-mail:lyjie2022@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李宇杰
冯忠居
何静斌
张聪
王思琦

引用本文:

李宇杰,冯忠居,何静斌,张聪,王思琦. 陡坡段穿越溶洞桩基竖向承载特性离心试验[J]. 浙江大学学报(工学版), 2024, 58(11): 2384-2392.

Yujie LI,Zhongju FENG,Jingbin HE,Cong ZHANG,Siqi WANG. Centrifugal test on vertical load bearing characteristic of pile foundation crossing karst cave in steep sloping area. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2384-2392.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2384

图 1  2#墩的桩基础
图 2  陡坡-桩基-溶洞的位置关系
图 3  TLJ-3离心模型机
物理量量纲原型离心模型
尺寸lL11/n
水质量分数w11
密度ρML?311
应变ε11
应力σML?1T?211
质量mM11/n3
FMLT?211/n2
土压力p11/n
重度γ1n
加速度aLT?21n
时间tT11/n2
角度α11
变形uL11/n
表 1  离心模型试验中物理量的相似关系
图 4  离心模型试验的桩基模型与溶洞模型
类型A/m2E/GPaEA/GN误差/%
原型桩3.1430.0094.201.2%
模型桩207.24×10?646.0095.33
表 2  模型桩与原型桩的抗压刚度
类别ww/%γ/(kN·m?3)E/MPaφ/(°)c/kPa
粉质黏土3018282228
中风化灰岩1.3256000
表 3  模型的地基土层参数
类别ww /%γ/(kN·m?3)E//MPaφ/(°)c/kPa
粉质黏土3019.529.219.827.8
中风化灰岩1.5276000
表 4  原型的地基土层参数
l/mmα/(°)L/mmH/mm
2004560 (2.4D)无溶洞
2004560 (2.4D)30 (1.2D)
2004560 (2.4D)60 (2.4D)
2004560 (2.4D)90 (3.6D)
2004560 (2.4D)120 (4.8D)
表 5  离心模型试验的工况设置
图 5  桩顶竖向位移的测量装置
图 6  桩身测点布设的示意图
图 7  不同溶洞高度下桩基的P-S曲线
图 8  不同溶洞高度下的桩基竖向极限承载力
图 9  不同溶洞高度下桩身的轴力分布规律
图 10  溶洞高度对桩身轴力分布的影响
图 11  不同溶洞高度下的桩侧阻力分布规律
图 12  溶洞高度对桩侧阻力分布的影响
图 13  溶洞高度对桩基分项承载力的影响
1 冯忠居. 特殊地区基础工程[M]. 北京: 人民交通出版社, 2008.
2 冯忠居, 王航, 魏进, 等 黄土冲沟斜坡桥梁桩基竖向承载特性模型试验研究[J]. 岩土工程学报, 2015, 37 (12): 2308- 2314
FENG Zhongju, WANG Hang, WEI Jin, et al Experimental study on the vertical bearing characteristics of bridge pile foundations on loess trench slopes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (12): 2308- 2314
doi: 10.11779/CJGE201512022
3 GU Z F, LIU Q, LU Y R, et al Analysis and prevention of sinkhole collapses during the reconstruction and extension of Guang-Qing freeway, China[J]. Environmental Earth Sciences, 2016, 75 (9): 788
doi: 10.1007/s12665-016-5625-2
4 QU L M, DING X M, KOUROUSSIS G, et al Dynamic interaction of soil and end-bearing piles in sloping ground: numerical simulation and analytical solution[J]. Computers and Geotechnics, 2021, 134 (6): 103917
5 彭文哲. 基于应变楔理论的陡坡段桥梁桩基设计计算方法研究[D]. 长沙: 湖南大学, 2020.
PENG Wenzhe. Research on the design and calculation method of pile foundation for bridge in steep slope section based on strain wedge theory [D]. Changsha: Hunan University, 2020.
6 尹平保, 聂道流, 杨朝晖, 等 斜坡基桩p-y曲线及水平承载计算方法研究[J]. 岩石力学与工程学报, 2018, 37 (4): 996- 1003
YIN Pingbao, NIE Daoliu, YANG Zhaohui, et al Study on p-y curve and horizontal bearing calculation method for slope foundation piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (4): 996- 1003
7 CHEN H Y, FENG Z J, LI T, et al Study on the vertical bearing performance of pile across cave and sensitivity of three parameters[J]. Scientific Reports, 2021, 11 (1): 17342
doi: 10.1038/s41598-021-96883-7
8 冯忠居, 武敏, 何静斌, 等 陡坡-岩溶耦合作用下公路桥梁桩基极限承载力的计算[J]. 公路, 2021, 66 (1): 115- 121
FENG Zhongju, WU Min, HE Jingbin, et al Calculation of ultimate bearing capacity of pile foundations of highway bridges under coupled steep slope-karst action[J]. Highway, 2021, 66 (1): 115- 121
9 冯忠居, 周桂梅, 付长凯, 等 堆载滑动对陡坡柱式桥墩与桩基的力学与变形特性分析[J]. 公路, 2016, 61 (3): 69- 76
FENG Zhongju, ZHOU Guimei, FU Changkai, et al Analysis of mechanical and deformation characteristics of pile sliding on steeply sloped column bridge piers and pile foundations[J]. Highway, 2016, 61 (3): 69- 76
10 冯忠居, 陈慧芸, 白少奋, 等 公路桥梁桩基穿越超大型溶洞的荷载传递机制试验研究[J]. 岩石力学与工程学报, 2023, 42 (Suppl.1): 3700- 3711
FENG Zhongju, CHEN Huiyun, BAI Shaofen, et al Experimental study on the load transfer mechanism of highway bridge pile foundation through mega cavern[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (Suppl.1): 3700- 3711
11 陈慧芸, 冯忠居, 白少奋, 等 桥梁桩基穿越溶洞的荷载传递机制试验研究[J]. 岩土力学, 2023, 44 (5): 1405- 1415
CHEN Huiyun, FENG Zhongju, BAI Shaofen, et al Experimental study on the load transfer mechanism of bridge pile foundation through caves[J]. Rock and Soil Mechanics, 2023, 44 (5): 1405- 1415
12 陈慧芸, 冯忠居, 蔡杰, 等 串珠状溶洞影响下桩基竖向承载特性离心试验[J]. 哈尔滨工业大学学报, 2023, 55 (6): 83- 92
CHEN Huiyun, FENG Zhongju, CAI Jie, et al Centrifugal tests on vertical bearing characteristics of pile foundations under the influence of bead-like cavities[J]. Journal of Harbin Institute of Technology, 2023, 55 (6): 83- 92
doi: 10.11918/202206118
13 董芸秀, 冯忠居, 郝宇萌, 等 岩溶区桥梁桩基承载力试验与合理嵌岩深度[J]. 交通运输工程学报, 2018, 18 (6): 27- 36
DONG Yunxiu, FENG Zhongju, HAO Yumeng, et al Bearing capacity test of bridge pile foundations in karst areas and reasonable rock embedded depth[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (6): 27- 36
doi: 10.3969/j.issn.1671-1637.2018.06.004
14 黄明, 付俊杰, 陈福全, 等 桩端荷载与地震耦合作用下溶洞顶板的破坏特征及安全厚度计算[J]. 岩土力学, 2017, 38 (11): 3154- 3162
HUANG Ming, FU Junjie, CHEN Fuquan, et al Damage characteristics and safe thickness calculation of cavern roof slab under coupled pile-end load and earthquake[J]. Rock and Soil Mechanics, 2017, 38 (11): 3154- 3162
15 赵明华, 徐卓君, 肖晓, 等 基于平面应变模型的岩溶区嵌岩桩桩端极限承载力计算[J]. 土木工程学报, 2018, 51 (2): 88- 94
ZHAO Minghua, XU Zhuojun, XIAO Xiao, et al Calculation of ultimate bearing capacity at the pile end of embedded piles in karst areas based on plane strain model[J]. Chinese Civil Engineering Journal, 2018, 51 (2): 88- 94
16 赵明华, 肖晓, 徐卓君, 等 基于Griffith强度准则的岩溶区桩基溶洞稳定性分析[J]. 中国公路学报, 2018, 31 (1): 31- 37
ZHAO Minghua, XIAO Xiao, XU Zhuojun, et al Stability analysis of pile foundation cavities in karst areas based on Griffith strength criterion[J]. China Journal of Highway and Transport, 2018, 31 (1): 31- 37
doi: 10.3969/j.issn.1001-7372.2018.01.004
17 柏华军 考虑溶洞顶板自重时桩端持力岩层安全厚度计算方法[J]. 岩土力学, 2016, 37 (10): 2945- 2952
BAI Huajun Calculation method of safe thickness of rock layer supported by pile end when considering the self-weight of cavern roof[J]. Rock and Soil Mechanics, 2016, 37 (10): 2945- 2952
18 林天爵, 杨果林, 柳卓, 等 考虑竖向摩阻作用的陡坡段桥梁桩基侧向受力分析[J]. 东南大学学报, 2021, 51 (6): 986- 995
LIN Tianjue, YANG Guolin, LIU Zhuo, et al Lateral force analysis of bridge pile foundations on steep slope sections considering vertical friction[J]. Journal of Southeast University, 2021, 51 (6): 986- 995
19 张永杰, 夏旖琪, 冯夏庭, 等 陡坡段双桩-柱基础简化计算方法及影响因素分析[J]. 岩土力学, 2017, 38 (6): 1705- 1715
ZHANG Yongjie, XIA Yiqi, FENG Xiating, et al Simplified calculation method and analysis of influencing factors for double pile-column foundation in steep slope section[J]. Rock and Soil Mechanics, 2017, 38 (6): 1705- 1715
20 ZHANG Y F, LIU H Y, LI J, et al Research on the influence mechanism of the high-steep slope on the deformation characteristics of bridge substructure[J]. Advances in Civil Engineering, 2021, (3): 9037680
21 张智浩, 张慧乐, 马凛, 等 岩溶区嵌岩桩的破坏模式与工程设计探讨[J]. 岩石力学与工程学报, 2013, 32 (Suppl.2): 4130- 4138
ZHANG Zhihao, ZHANG Huile, MA Lin, et al Damage modes and engineering design of rock embedded piles in karst areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.2): 4130- 4138
22 袁维, 刘尚各, 聂庆科, 等 基于冲切破坏模式的嵌岩桩桩端溶洞顶板临界厚度确定方法研究[J]. 岩土力学, 2019, 40 (7): 2789- 2798
YUAN Wei, LIU Shangge, NIE Qingke, et al Study on the critical thickness determination method of the cavity top plate at the pile end of embedded rock pile based on punching and cutting damage mode[J]. Rock and Soil Mechanics, 2019, 40 (7): 2789- 2798
23 WANG P, DING H, ZHANG P Influence of karst caves at pile side on the bearing capacity of super-long pile foundation[J]. Mathematical Problems in Engineering, 2020, (2): 4895735
24 张永杰, 邓俊强, 杨兴山, 等 考虑溶洞空间形态的岩溶桩基稳定性分析方法[J]. 中国公路学报, 2019, 32 (1): 37- 45
ZHANG Yongjie, DENG Junqiang, YANG Xingshan, et al Stability analysis method of karst pile foundation considering spatial morphology of caves[J]. China Journal of Highway and Transport, 2019, 32 (1): 37- 45
25 周德泉, 张杨龙, 曹勇, 等 溶洞高度影响嵌岩桩轴力传递及桩侧超载响应试验[J]. 湖南大学学报: 自然科学版, 2022, 49 (7): 83- 93
ZHOU Dequan, ZHANG Yanglong, CAO Yong, et al Experiments on the effect of cavity height on the axial force transfer and pile side overload response of embedded piles[J]. Journal of Hunan University: Natural Science Edition, 2022, 49 (7): 83- 93
doi: 10.55463/issn.1674-2974.49.7.9
26 杨果林, 邓志宏, 罗桂军, 等 横坡段桩柱式桥梁双桩基础结构的力学行为研究[J]. 铁道科学与工程学报, 2023, 20 (3): 920- 930
YANG Guolin, DENG Zhihong, LUO Guijun, et al Study on the mechanical behavior of double pile foundation structure of pile-column bridge with cross slope section[J]. Journal of Railway Science and Engineering, 2023, 20 (3): 920- 930
27 蒋武军, 鄢定媛, 王明明, 等 特大型溶洞回填体基桩荷载-沉降规律与计算研究[J]. 岩土工程学报, 2017, 39 (Suppl.2): 67- 70
JIANG Wujun, YAN Dingyuan, WANG Mingming, et al Study on the load-settlement law and calculation of foundation piles in backfilled bodies of very large caves[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (Suppl.2): 67- 70
doi: 10.11779/CJGE2017S2017
[1] 王超,朱春洲,邹金锋,刘波,张晗秋,马江锋. 盾构隧道近接斜交侧穿桥梁桩基变形计算方法[J]. 浙江大学学报(工学版), 2024, 58(3): 557-569.
[2] 张聪,冯忠居,王富春,关云辉,张福强. 基于离心模型试验的近断层单桩水平承载特性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 542-551.
[3] 高晓杰,李召峰,林久卿,宋云龙,青尚杰,崔向东,彭晓光. 滨海潮汐岩溶地表软土注浆技术研究与应用[J]. 浙江大学学报(工学版), 2023, 57(3): 552-561.
[4] 孔令刚,余佳,陈云敏. 船舶撞击近海风机群桩基础的离心模型试验[J]. 浙江大学学报(工学版), 2023, 57(2): 330-339.
[5] 朱奎 徐日庆 郭印. 刚-柔性桩复合地基中承载性状原位试验研究[J]. J4, 2008, 42(1): 72-76.