Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1533-1542    DOI: 10.3785/j.issn.1008-973X.2024.08.001
机械工程、能源工程     
全齿轮耦合机器人齿侧间隙建模与公差仿真
蒋君侠1(),仲笑欧1,吕林灿1,来建良2,金丁灿2
1. 浙江大学 机械工程学院,浙江 杭州 310058
2. 杭州景业智能科技股份有限公司,浙江 杭州 310051
Gear backlash modeling and tolerance simulation of fully gear-coupled robot
Junxia JIANG1(),Xiaoou ZHONG1,Lincan LV1,Jianliang LAI2,Dingcan JIN2
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
2. Hangzhou Jingye Intelligent Technology Limited Company, Hangzhou 310051, China
 全文: PDF(2479 KB)   HTML
摘要:

鉴于全齿轮耦合机器人齿轮传动链长、反转频率高的特点,分析机器人的结构和传动原理. 为了减小侧隙对机器人传动精度的影响,提出齿侧间隙理论建模及三维公差仿真分析方法. 针对驱动端的圆柱齿轮机构,对齿侧间隙进行理论建模和公差仿真分析,两者相吻合. 针对关节处的圆锥齿轮机构,提出将圆锥齿轮副等效为假想圆柱齿轮副的侧隙建模方法,与公差仿真分析结果吻合. 以机器人肩关节偏摆传动链为分析对象计算机器人末端误差,为了降低齿侧间隙及其导致的传动链回程误差,提出圆锥齿轮加垫的计算方法和电机转角补偿方法,通过实验验证该补偿方法的有效性.

关键词: 全齿轮耦合机器人齿侧间隙圆柱齿轮机构圆锥齿轮机构公差仿真    
Abstract:

The robot’s structure and transmission principles were analyzed given the characteristics of long gear transmission chains and high reverse frequency in fully gear-coupled robots. Theoretical modeling of gear backlash and a three-dimensional tolerance simulation analysis method were proposed to reduce the impact of backlash on the transmission accuracy of robots. The theoretical modeling and the tolerance simulation analysis of gear backlash were conducted for the cylindrical gear mechanism at the drive end. The two results were consistent. An equivalent backlash modeling method that equivalents the bevel gear pair as a hypothetical cylindrical gear pair was proposed for the bevel gear mechanism in joints, and the theoretical modeling analysis result accorded with the tolerance simulation analysis results. The end error of the robot was calculated by taking the robot shoulder joint swing transmission chain as the analysis object. The calculation method of bevel gear backlash and the motor angle compensation method were proposed to reduce gear backlash and the return error of the transmission chain caused by the gear backlash. The effectiveness of this compensation method was validated through experiment.

Key words: fully gear-coupled robot    gear backlash    cylinder gear mechanism    bevel gear mechanism    tolerance simulation
收稿日期: 2023-08-12 出版日期: 2024-07-23
CLC:  TH 132  
基金资助: 2022年度浙江省科技计划资助项目(2022C01054);浙江大学机器人研究院自主科研项目资金资助项目.
作者简介: 蒋君侠(1968—),男,研究员,博导,从事智能装备结构创新设计与开发的研究. orcid.org/0000-0001-7920-8282. E-mail:jiangjx@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蒋君侠
仲笑欧
吕林灿
来建良
金丁灿

引用本文:

蒋君侠,仲笑欧,吕林灿,来建良,金丁灿. 全齿轮耦合机器人齿侧间隙建模与公差仿真[J]. 浙江大学学报(工学版), 2024, 58(8): 1533-1542.

Junxia JIANG,Xiaoou ZHONG,Lincan LV,Jianliang LAI,Dingcan JIN. Gear backlash modeling and tolerance simulation of fully gear-coupled robot. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1533-1542.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.001        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1533

图 1  全齿轮机器人的结构与传动原理
图 2  肩关节传动链的原理
图 3  肩关节摆动传动链的结构
图 4  齿轮副齿侧间隙
图 5  圆锥齿轮副与假想圆柱齿轮副的示意图
项目主动轮从齿轮
$z$28110
m/mm2.52.5
$\alpha $/(°)2020
d/mm70275
$ {E_{{\text{ss}}}} $/μm?19?21
$ {E_{{\text{si}}}} $/μm?30?32
${F''_{\text{i}}}$/μm2731
S/μm8
${b_{\min }}$/μm2
${b_{\max }}$/μm30
表 1  圆柱齿轮机构的参数与公差
参数数值
减速比3.929
中心距$a$/mm172.5
齿轮精度等级5-f
中心距极限偏差/μm±20
最小极限法向侧隙/μm15
表 2  圆柱齿轮传动参数
图 6  圆柱法向侧隙的仿真结果
序号尺寸名称公差/mm贡献度/%
1主动轮齿厚偏差0.00522.0
2从动轮齿厚偏差0.00522.0
3齿轮副中心距偏差0.04021.7
4从动轮几何偏心0.01613.0
5轴承径向游隙0.01410.6
6主动轮几何偏心0.0149.9
7减速器输出轴圆跳动0.0080.8
表 3  圆柱齿轮公差的贡献度
项目jnmin/μm$\mu_{j_{\mathrm{n}}} $/μmjnmax/μm
理论建模325374
三维仿真345475
表 4  圆柱齿轮机构法向侧隙的对比
图 7  圆锥齿轮副与假想圆柱齿轮副的侧隙关系图
参数数值
z31
m/mm3.5
$\alpha $/(°)20
d/mm108.5
B/mm9
${d_{\text{m}}}$/mm102.1
$ {E_{{\text{ss}}}} $/μm?32
$ {E_{{\text{si}}}} $/μm?53
${b_{\min }}$/μm10
${b_{\max }}$/μm30
表 5  圆锥齿轮机构的参数与公差
参数数值
减速比1
$ {f_{\text{a}}} $/μm9
$ {E_\Sigma } $/μm10
$ F_{{{{\mathrm{i}}\Sigma }}}{{{''}}} $/μm20
齿轮精度等级5-f
$j_{\mathrm{nmin}}'' $/μm19
P/μm12
表 6  圆锥齿轮传动参数
图 8  圆锥法向侧隙的仿真结果
序号尺寸名称公差/mm贡献度/%
1主动轮齿厚偏差0.01130.0
2从动轮齿厚偏差0.01130.0
3主动轮几何偏心0.02815.1
4从动轮几何偏心0.02810.2
5面轮廓度误差0.0129.1
6轴交角偏差0.0203.6
7轴承径向游隙0.0102.0
表 7  圆锥齿轮的公差贡献度
项目jnmin/μm$\mu_{j_{\mathrm{n}}} $/μmjnmax/μm
理论建模7090110
三维仿真7290108
表 8  圆锥齿轮机构法向侧隙的对比
图 9  机器人肩关节的L型姿态
图 10  末端位置测量实验
图 11  手持式探针三坐标仪
1 金丁灿, 蒋君侠, 来建良, 等 后处理全齿轮传动机械臂的设计[J]. 浙江大学学报: 工学版, 2022, 56 (5): 864- 872
JIN Dingcan, JIANG Junxia, LAI Jianliang, et al Design of gearing chain-based manipulator for post-processing[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (5): 864- 872
2 JIANG J X, DONG Q, LI Y, et al A study on the stiffness of the end of the suspended master-slave remote control manipulator[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44 (10): 483
doi: 10.1007/s40430-022-03774-7
3 张磊磊, 范元勋 齿轮侧隙对齿轮传动精度的影响分析[J]. 机床与液压, 2017, 45 (17): 114- 116
ZHANG Leilei, FAN Yuanxun Analysis on influence of gear backlash on gear transmission accuracy[J]. Machine Tool and Hydraulics, 2017, 45 (17): 114- 116
4 陈文华, 朱海峰, 樊晓燕 齿轮系统传动误差的蒙特卡洛模拟分析[J]. 仪器仪表学报, 2004, (4): 435- 437
CHEN Wenhua, ZHU Haifeng, FAN Xiaoyan Monte-carlo simulation analysis of transmission error for gear drive systems[J]. Chinese Journal of Scientific Instrument, 2004, (4): 435- 437
doi: 10.3321/j.issn:0254-3087.2004.04.005
5 孙涛, 程亚强 基于CETOL的含齿侧间隙的齿轮系统尺寸链及动力学分析[J]. 机械传动, 2015, 39 (10): 86- 89
SUN Tao, CHENG Yaqiang Dimensional chain and dynamics analysis of the gear system with backlash based on CETOL[J]. Journal of Mechanical Transmission, 2015, 39 (10): 86- 89
6 王光建, 周磊, 邹帅东 基于双齿面传动误差的侧隙连续测量与预测[J]. 工程科学学报, 2020, 42 (8): 1055- 1064
WANG Guangjian, ZHOU Lei, ZOU Shuaidong Measurement and prediction of backlash based on two-sided transmission error[J]. Chinese Journal of Engineering, 2020, 42 (8): 1055- 1064
7 YANG Q, LIU T, WU X, et al Gear backlash detection and evaluation based on current characteristic extraction and selection[J]. IEEE Access, 2020, 8: 107161- 107176
doi: 10.1109/ACCESS.2020.2999478
8 GIOVANNITTI E, NABAVI S, SQUILLERO G, et al A virtual sensor for backlash in robotic manipulators[J]. Journal of Intelligent Manufacturing, 2022, 33 (7): 1921- 1937
doi: 10.1007/s10845-022-01934-z
9 安凯 关节齿隙对空间机械臂末端定位精度的影响[J]. 兵工学报, 2014, 35 (8): 1301- 1307
AN Kai Effect of gear backlash on positioning precision of manipulator end-effectors[J]. Acta Armamentarii, 2014, 35 (8): 1301- 1307
doi: 10.3969/j.issn.1000-1093.2014.08.025
10 GUIDA R, RAVIOLA A, MIGLIORE D F, et al. Simulation of the effects of backlash on the performance of a collaborative robot: a preliminary case study [C]// International Conference on Robotics in Alpe-Adria Danube Region. Cham: Springer, 2022: 28-35.
11 杨政, 尚建忠, 罗自荣, 等 扭簧加载双片齿轮消隙机构综合啮合刚度[J]. 机械工程学报, 2013, 49 (1): 23- 30
YANG Zheng, SHANG Jianzhong, LUO Zirong, et al Research on synthesis meshing stiffness of torsional spring-loaded double-gear anti-backlash mechanism[J]. China Mechanical Engineering, 2013, 49 (1): 23- 30
doi: 10.3901/JME.2013.01.023
12 马伯渊, 李志武 弹簧消隙齿轮传动链回差分析估算[J]. 机械设计, 2001, 6 (6): 40- 42
MA Boyuan, LI Zhiwu Return difference analysis and estimation of spring anti backlash gear transmission chain[J]. Mechanical Design, 2001, 6 (6): 40- 42
13 任海鹏, 何斌 双电机驱动机床进给系统消隙控制[J]. 电机与控制学报, 2014, 18 (3): 60- 66
REN Haipeng, HE Bin Anti-backlash control of machine tool feed system driven by dual-motors[J]. Electric Machines and Control, 2014, 18 (3): 60- 66
doi: 10.3969/j.issn.1007-449X.2014.03.010
14 ZHANG L, LIAO H, FAN D, et al Design optimization analysis of an anti-backlash geared servo system using a mechanical resonance simulation and experiment[J]. Mechanical Sciences, 2021, 12 (1): 305- 319
doi: 10.5194/ms-12-305-2021
15 GAVGANI A M, SORNIOTTI A, DOHERTY J, et al Optimal gearshift control for a novel hybrid electric drivetrain[J]. Mechanism and Machine Theory, 2016, 105: 352- 368
doi: 10.1016/j.mechmachtheory.2016.06.016
16 YU L, WANG G, ZOU S The experimental research on gear eccentricity error of backlash-compensation gear device based on transmission error[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19 (1): 5- 12
doi: 10.1007/s12541-018-0001-7
17 江勇, 张伟, 刘晓源, 等 双电机消隙技术在串联机械臂中的仿真与应用[J]. 中国机械工程, 2020, 31 (16): 1991- 1997
JIANG Yong, ZHANG Wei, LIU Xiaoyuan, et al Simulation and application of anti-backlash technical with dual-motor in tandem manipulators[J]. China Mechanical Engineering, 2020, 31 (16): 1991- 1997
18 黄家贤. 机构精确度[M]. 西安: 西安电子科技大学出版社, 1994: 87-96.
19 毛英泰. 误差理论与精度分析[M]. 北京: 国防工业出版社, 1982: 228-239.
20 李聚波, 贺红霞, 张洛平, 等 齿轮传动精度的分析与计算[J]. 煤矿机械, 2006, (7): 18- 20
LI Jubo, HE Hongxia, ZHANG Luoping, et al Analysis and calculation of precision of gear transmission[J]. Coal Mine Machinery, 2006, (7): 18- 20
doi: 10.3969/j.issn.1003-0794.2006.07.008
21 王龙宝. 齿轮刚度计算及其有限元分析[D]. 镇江: 江苏大学, 2009.
WANG Longbao. Calculation and finite element analyses of gears mesh stiffness [D]. Zhenjiang: Jiangsu University, 2009.
[1] 陈志群,钱林方,朱一宬. 脂润滑齿轮齿条增程机构的动态特性[J]. 浙江大学学报(工学版), 2022, 56(9): 1833-1844.
[2] 温竹鹏,陈捷,刘连华,焦玲玲. 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报(工学版), 2022, 56(6): 1212-1219.
[3] 杨羽,毛世民,王迪,曹伟,李宣秋,刘存波. 弧齿锥齿轮全工序法及机床误差敏感性分析[J]. 浙江大学学报(工学版), 2022, 56(5): 879-889.
[4] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[5] 刘文涛,赵坤,汪久根,宋丽. 汽车制动系统用滚珠丝杠副振动检测方法[J]. 浙江大学学报(工学版), 2021, 55(8): 1529-1537.
[6] 张雷,徐海军,邹腾安,徐小军,常雨康. 嵌套Z轴式水下矢量推进系统建模与特性分析[J]. 浙江大学学报(工学版), 2020, 54(3): 450-458.
[7] 陈茜,李俊阳,王家序,蒋倩倩,唐挺. 制造误差对谐波齿轮应力的影响规律[J]. 浙江大学学报(工学版), 2019, 53(12): 2289-2297.
[8] 张雷,张立华,王家序,李俊阳,肖科. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644.
[9] 符升平,李胜波,罗宁,Roman Nikolaevich Polyakov. 换挡工况下湿式换挡离合器变胞机理[J]. 浙江大学学报(工学版), 2019, 53(4): 628-637.
[10] 刘统, 龚国芳, 石卓, 彭左, 吴伟强. TBM刀盘驱动系统单神经元模糊同步控制[J]. 浙江大学学报(工学版), 2016, 50(11): 2207-2214.
[11] 王家序, 周祥祥, 李俊阳, 肖科, 周广武. 杯形柔轮谐波传动三维双圆弧齿廓设计[J]. 浙江大学学报(工学版), 2016, 50(4): 616-624.
[12] 王连生,郝志勇,郑康,刘功文. 考虑齿轮阻滞力矩的变速箱敲击噪声仿真与试验[J]. 浙江大学学报(工学版), 2014, 48(5): 911-916.
[13] 胡芳芳, 蒋庆磊, 吴大转, 王乐勤. 内啮合齿式离合器轴向接合过程的冲击特性[J]. J4, 2013, 47(2): 325-331.