计算机与控制工程 |
|
|
|
|
精英协同进化的蜉蝣算法 |
吴慧玲( ),刘升*( ) |
上海工程技术大学 管理学院,上海 201620 |
|
Elite coevolutionary mayfly algorithm |
Huiling WU( ),Sheng LIU*( ) |
School of Management, Shanghai University of Engineering Science, Shanghai 201620, China |
1 |
ZERVOUDASKIS K, TSAFARAKIS S A mayfly optimization algorithm[J]. Computers and Industrial Engineering, 2020, 145: 106559
doi: 10.1016/j.cie.2020.106559
|
2 |
蒋宇飞, 许贤泽, 徐逢秋, 等. 多策略融合改进的自适应蜉蝣算法[EB/OL]. (2022-10-10)[2023-05-30]. https://doi.org/10.13700/j.bh.1001-5965.2022.0492.
|
3 |
王义, 张达敏, 张琳娜, 等 基于黄金正弦与自适应融合的蜉蝣优化算法[J]. 计算机应用研究, 2021, 38 (10): 3072- 3077 WANG Li, ZHANG Damin, ZHANG Linna, et al Mayfly optimization algorithm based on gold sine and adaptive merge[J]. Application Research of Computers, 2021, 38 (10): 3072- 3077
|
4 |
LI L L, LOU J L, TSENG M L, et al A hybrid dynamic economic environmental dispatch model for balancing operating costs and pollutant emissions in renewable energy: a novel improved mayfly algorithm[J]. Expert Systems with Applications, 2022, 203: 117411
doi: 10.1016/j.eswa.2022.117411
|
5 |
GUO L, XU C, YU T, et al An improved mayfly optimization algorithm based on median position and its application in the optimization of PID parameters of hydro-turbine governor[J]. IEEE Access, 2022, 10: 36335- 36349
doi: 10.1109/ACCESS.2022.3160714
|
6 |
ZHAO S, WANG D Elite-ordinary synergistic particle swarm optimization[J]. Information Sciences, 2022, 609: 1567- 1587
doi: 10.1016/j.ins.2022.07.131
|
7 |
LIANG B, ZHAO Y, LI Y A hybrid particle swarm optimization with crisscross learning strategy[J]. Engineering Applications of Artificial Intelligence, 2021, 105: 104418
doi: 10.1016/j.engappai.2021.104418
|
8 |
LYNN N, SUGANTHAN P N Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation[J]. Swarm and Evolutionary Computation, 2015, 24: 11- 24
doi: 10.1016/j.swevo.2015.05.002
|
9 |
MENDES R, KENNEDY J, NEVES J The fully informed particle swarm: simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 204- 210
doi: 10.1109/TEVC.2004.826074
|
10 |
GONG Y J, ZHANG J. Small-world particle swarm optimization with topology adaptation [C]// Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation . [S. l.]: ACM, 2013: 25–32.
|
11 |
LI T, SHI J, DENG W, et al Pyramid particle swarm optimization with novel strategies of competition and cooperation[J]. Applied Soft Computing, 2022, 121: 108731
doi: 10.1016/j.asoc.2022.108731
|
12 |
LIN A, SUN W, YU H, et al Global genetic learning particle swarm optimization with diversity enhancement by ring topology[J]. Swarm and Evolutionary Computation, 2019, 44: 571- 583
doi: 10.1016/j.swevo.2018.07.002
|
13 |
BECKER G S A theory of marriage: part I[J]. Journal of Political Economy, 1973, 81 (4): 813- 846
doi: 10.1086/260084
|
14 |
陈博文, 邹海 总结性自适应变异的粒子群算法[J]. 计算机工程与应用, 2022, 58 (8): 67- 75 CHEN Bowen, ZOU Hai Self-conclusion and self-adaptive variation particle swarm optimization[J]. Computer Engineering and Applications, 2022, 58 (8): 67- 75
|
15 |
SHI Y, EBERHART R. A modified particle swarm optimizer [C]// Proceedings of the IEEE International Conference on Evolutionary Computation . Anchorage: IEEE, 1998: 69-73.
|
16 |
季伟东, 徐浩天, 林平 自适应变异粒子群优化算法及在新冠肺炎疫情传播预测中的应用[J]. 小型微型计算机系统, 2021, 42 (3): 472- 477 JI Weidong, XU Haotian, LIN Ping Adaptive mutation particle swarm optimization and its application in predicting the COVID-19 epidemic transmission[J]. Journal of Chinese Computer Systems, 2021, 42 (3): 472- 477
|
17 |
陈贵敏, 贾建援, 韩琪 粒子群优化算法的惯性权值递减策略研究[J]. 西安交通大学学报, 2006, 40 (1): 53- 56 CHEN Guimin, JIA Jianyuan, HAN Qi Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm[J]. Journal of Xi'an Jiaotong University, 2006, 40 (1): 53- 56
|
18 |
闫群民, 马瑞卿, 马永翔, 等 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48 (4): 120- 127 YAN Qunmin, MA Ruiqing, MA Yongxiang, et al Adaptives simulated annealing particles swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48 (4): 120- 127
|
19 |
梁田, 曹德欣 基于莱维飞行的改进简化粒子群算法[J]. 计算机工程与应用, 2021, 57 (20): 188- 196 LIANG Tian, CAO Dexin Improved and simplified particle swarm optimization algorithm based on Levy flight[J]. Computer Engineering and Applications, 2021, 57 (20): 188- 196
|
20 |
邓佳欣, 张达敏, 何庆, 等 结合莱维飞行和布朗运动的金鹰算法[J]. 系统仿真学报, 2023, 35 (6): 1290- 1307 DEN JiaXin, ZHANG Damin, HE Qing, et al Golden eagle optimizer algorithm combining Levy flight and brownian motion[J]. Journal of System Simulation, 2023, 35 (6): 1290- 1307
|
21 |
欧云, 周恺卿, 尹鹏飞, 等 双收敛因子策略下的改进灰狼优化算法[J]. 计算机应用, 2023, 43 (9): 2679- 2685 OU Yun, ZHOU Kaiqing, YIN Pengfei, et al Improved grey wolf optimizer algorithm based on dual convergence factor strategy[J]. Journal of Computer Applications, 2023, 43 (9): 2679- 2685
|
22 |
MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
|
23 |
MIRJALILI S, MIRJALILI S M, LEWIS A Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46- 61
doi: 10.1016/j.advengsoft.2013.12.007
|
24 |
KENNEDY J, EBERHART R. Particle swarm optimization [C]/ / Proceedings of ICNN'95-International Conference on Neural Networks . Perth: IEEE, 1995: 1942–1948.
|
25 |
MIRJALILI S SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120- 133
doi: 10.1016/j.knosys.2015.12.022
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|