计算机与控制工程 |
|
|
|
|
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法 |
张晨( ),汪立新*( ),孔祥玉 |
火箭军工程大学 导弹工程学院,陕西 西安 710025 |
|
Temperature modeling and compensation method of hemispherical resonator gyro based on KPCA and grouped method of data handling neural network |
Chen ZHANG( ),Lixin WANG*( ),Xiangyu KONG |
School of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China |
1 |
汪立新, 周小刚, 刘洁瑜, 等. 半球谐振陀螺惯性系统[M]. 西安: 西北工业大学出版社, 2011: 20–34.
|
2 |
周小刚, 汪立新, 佘嫱, 等 半球谐振陀螺温度补偿与实验研究[J]. 宇航学报, 2010, 31 (4): 1083- 1087 ZHOU Xiaogang, WANG Lixin, SHE Qiang, et al HRG temperature compensation and experiment research[J]. Journal of Astronautics, 2010, 31 (4): 1083- 1087
|
3 |
周强, 覃施甦, 方海斌, 等 半球谐振陀螺温度特性及补偿分析[J]. 压电与声光, 2015, 37 (5): 818- 820 ZHOU Qiang, QIN Shisu, FANG Haibin, et al The temperature characteristic and compensating analysis of HRG[J]. Piezoelectrics and Acoustooptics, 2015, 37 (5): 818- 820
|
4 |
吴宗收, 汪立新, 李新三, 等 一种改进PSO-ARMA半球谐振陀螺温度误差建模方法[J]. 北京航空航天大学学报, 2022, 48 (6): 1050- 1056 WU Zhongshou, WANG Lixin, LI Xinsan, et al An improved PSO-ARMA method for temperature error modeling of hemispherical resonator gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (6): 1050- 1056
|
5 |
李广胜, 蒋英杰, 孙志强, 等 基于AR多变量模型的半球谐振陀螺温度漂移建模[J]. 传感技术学报, 2009, 22 (10): 1442- 1445 LI Guangsheng, JIANG Yingjie, SUN Zhiqiang, et al Modeling temperature drift of HRG based on AR multi-variable model[J]. Chinese Journal of Sensors and Actuators, 2009, 22 (10): 1442- 1445
|
6 |
LI X S, LI C, SHEN Q, et al A multiple regression based method for indirect compensation of hemispherical resonator gyro temperature error[J]. Scientific Reports, 2023, 13: 6019
doi: 10.1038/s41598-023-31868-2
|
7 |
汪国新, 郝勇生, 苏志刚 基于KPCA-GG的火力发电设备状态诊断方法[J]. 东南大学学报:自然科学版, 2019, 49 (3): 542- 548 WANG Guoxin, HAO Yongsheng, SU Zhigang Condition diagnosis method for thermal power generation equipment based on KPCA-GG[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (3): 542- 548
|
8 |
黄泽丰, 杨莘, 邓慧萍, 等 基于MDLatLRR和KPCA的光场图像全聚焦融合[J]. 光子学报, 2023, 52 (4): 0410004 HUANG Zefeng, YANG Shen, DENG Huiping, el al Light field all-in-focus image fusion based on MDLatLRR and KPCA[J]. Acta Photonica Sincia, 2023, 52 (4): 0410004
doi: 10.3788/gzxb20235204.0410004
|
9 |
高运广, 蔡艳平, 盛安 基于模糊AGA-KPCA的MIMU传感器故障诊断方法[J]. 中国惯性技术学报, 2022, 30 (6): 835- 840 GAO Yunguang, CAI Yanping, SHENG An Fault diagnosis method for MIMU sensors based on fuzzy AGA-KPCA[J]. Journal of Chinese Inertial Technology, 2022, 30 (6): 835- 840
|
10 |
段伟, 蔡国军, 袁俊, 等 基于GMDH的地震液化场地侧向变形预测模型[J]. 东南大学学报: 自然科学版, 2021, 51 (2): 306- 311 DUAN Wei, CAI Guojun, YUAN Jun, et al Prediction model for liquefaction-induced lateral spread displacement based on GHDH[J]. Journal of Southeast University: Natural Science Edition, 2021, 51 (2): 306- 311
|
11 |
凯立德·艾尔巴兹. 基于机器学习技术的隧道掘进机性状的预测模型研究[D]. 上海: 上海交通大学, 2019: 35–46. Khalid Elbaz. Performance prediction of tunnel boring machine by using machine learning techniques [D]. Shanghai: Shanghai Jiao Tong University, 2019: 35–46.
|
12 |
AHMADI A, ASADI Y, AMANI A M, et al Resilient model predictive adaptive control of networked Z-source inverters using GMDH[J]. IEEE Transactions on Smart Grid, 2022, 13 (5): 3723- 3734
doi: 10.1109/TSG.2022.3174250
|
13 |
XIE L, JIA Y, XIAO J, et al GMDH-based outlier detection model in classification problems[J]. Journal of Systems Science and Complexity, 2020, 33: 1516- 1532
doi: 10.1007/s11424-020-9002-6
|
14 |
BAND S S, MOHAMMADZADEH A, CSIBA P, et al Voltage regulation for photovoltaics-battery-fuel systems using adaptive group method of data handling neural networks (GMDH-NN)[J]. IEEE Access, 2020, 8: 213748- 213757
doi: 10.1109/ACCESS.2020.3037134
|
15 |
刘强, 秦泗钊 过程工业大数据建模研究展望[J]. 自动化学报, 2016, 42 (2): 161- 171 LIU Qiang, QIN Joe Perspectives on big data modeling of process industries[J]. Acta Automatica Sinica, 2016, 42 (2): 161- 171
|
16 |
王晓军. 基于大数据的风洞马赫数集成建模方法的研究[D]. 沈阳: 东北大学, 2016: 9–15. WANG Xiaojun. The research of ensemble methods based on big data for the Mach number prediction in wind tunnel [D]. Shen Yang: Northeastern University, 2016: 9–15.
|
17 |
王龙晖. 基于并行计算的调节阀大数据智能分析及建模方法研究[D]. 济南: 山东大学, 2019: 81–90. WANG Longhui. Research on intelligent analysis and modeling of control valve big data based on parallel computing [D]. Jinan: Shandong University, 2019: 81–90.
|
18 |
杨小佳. 基于腐蚀大数据技术的含Cr低合金钢耐蚀性能调控研究[D]. 北京: 北京科技大学, 2021: 98–110. YANG Xiaojia. Research on the control of corrosion resistance of Cr-containing low-alloy steel based on corrosion big data technology [D]. Beijing: University of Science and Technology Beijing, 2021: 98–110.
|
19 |
陈效真, 周姣, 董燕琴, 等 大数据理论在高精度惯性导航系统测试技术中的应用[J]. 导航与控制, 2018, 17 (1): 11- 20 CHEN Xiaozhen, ZHOU Jiao, DONG Yanqin, et al Application of big data technology on test technology of high accuracy inertial navigation system[J]. Navigation and Control, 2018, 17 (1): 11- 20
|
20 |
王庆杰. 基于特征选择和时频分析的径流预测机器学习模型研究[D]. 乌鲁木齐: 新疆农业大学, 2022: 65–67. WANG Qingjie. A machine learning model for runoff prediction based on feature selection and joint time-frequency analysis [D]. Urumqi: Xinjiang Agricultural University, 2022: 65–67.
|
21 |
DENG X, TIAN X, CHEN S, et al Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring[J]. IEEE Transactions on Control Systems Technology, 2019, 27 (6): 2526- 2540
doi: 10.1109/TCST.2018.2865413
|
22 |
孔祥玉, 曹泽豪, 安秋生, 等 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33 (9): 1537- 1548 KONG Xiangyu, CAO Zehao, AN Qiusheng, et al Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33 (9): 1537- 1548
|
23 |
徐田军, 王桂增 改进的GMDH方法及其在参数预报中的应用[J]. 控制与决策, 1994, (5): 367- 371 XU Tianjun, WANG Guizeng Improved GMDH algorithm and its application in parameter prediction[J]. Control and Decision, 1994, (5): 367- 371
|
24 |
姚泽楷, 蔡耀仪, 李诗文, 等 基于平滑样条曲线结合离散状态转移算法的拉曼光谱基线校正方法[J]. 中国激光, 2022, 49 (18): 1811001 YAO Zekai, CAI Yaoyi, LI Shiwen, et al Baseline correction for raman spectroscopy using cubic spline smoothing combined with discrete state transformation algorithm[J]. Chinese Journal of Lasers, 2022, 49 (18): 1811001
doi: 10.3788/CJL202249.1811001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|