Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1336-1345    DOI: 10.3785/j.issn.1008-973X.2024.07.003
计算机与控制工程     
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
张晨(),汪立新*(),孔祥玉
火箭军工程大学 导弹工程学院,陕西 西安 710025
Temperature modeling and compensation method of hemispherical resonator gyro based on KPCA and grouped method of data handling neural network
Chen ZHANG(),Lixin WANG*(),Xiangyu KONG
School of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China
 全文: PDF(3323 KB)   HTML
摘要:

针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法. 通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量. 为了去除HRG输出数据的相关性和冗余性,引入KPCA并降低特征向量维度. 将特征向量代入GMDH神经网络训练,区分训练集和验证集以确定网络权值和网络结构,实现HRG温度漂移的建模与补偿. 实验结果表明,单一样本预测时,所提方法预测效果明显好于传统多项式模型;多样本预测时,在4种不同训练样本下,所提方法相比传统多项式模型精度分别提升了48.5%、54.0%、56.3%、68.4%,相比GMDH模型分别提升了3.6%、5.1%、3.8%、8.8%. 所提方法能够有效提高HRG在变温工况下的测量精度.

关键词: 半球谐振陀螺(HRG)核主成分分析(KPCA)数据处理组合方法(GMDH)温度建模与补偿测量精度    
Abstract:

A modeling and compensation method based on kernel principal component analysis (KPCA) and grouped method of data handling (GMDH) neural network was proposed aiming at the temperature modeling and compensation of hemispherical resonator gyro (HRG). By analyzing the temperature characteristics and the big data characteristics of HRG, the eigenvectors of the network were initially selected. To remove the correlation and redundancy of the HRG outputs, KPCA was introduced and the eigenvector dimension was reduced. The eigenvectors were substituted into the GMDH neural network and the training set and the validation set were distinguished to determine the network weight and structure to model and compensate for the HRG temperature drift. Experiment results showed that the proposed method was significantly better than the traditional polynomial model for single-sample predictions; for multiple-sample predictions, under four different training samples, the accuracy of the proposed method was 46.5%, 51.5%, 54.6% and 65.3% higher than that of the traditional polynomial model, also 3.6%, 5.1%, 3.8% and 8.8% higher than that of the GMDH model. The proposed method effectively improved the measurement accuracy of HRG under variable temperature conditions.

Key words: hemispherical resonator gyro(HRG)    kernel principal component analysis(KPCA)    grouped method of data handling(GMDH)    temperature modeling and compensation    measurement accuracy
收稿日期: 2023-06-13 出版日期: 2024-07-01
CLC:  V 241.5  
基金资助: 国防科技创新特区基金资助项目(HHJJ-2022-0402).
通讯作者: 汪立新     E-mail: buaa0318@163.com;wlxxian@sina.com
作者简介: 张晨(1993—),男,博士生,从事惯性系统、大数据处理研究. orcid.org/0009-0001-1310-8390. E-mail:buaa0318@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张晨
汪立新
孔祥玉

引用本文:

张晨,汪立新,孔祥玉. 基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1336-1345.

Chen ZHANG,Lixin WANG,Xiangyu KONG. Temperature modeling and compensation method of hemispherical resonator gyro based on KPCA and grouped method of data handling neural network. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1336-1345.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.003        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1336

图 1  数据处理组合方法的网络结构
图 2  主成分分析和数据处理组合方法神经网络模型
图 3  半球谐振陀螺的实验装置
图 4  半球谐振陀螺的参数变化曲线
图 5  扣除转台运动前后半球谐振陀螺转动角度
图 6  平滑前后半球谐振陀螺转动角度
图 7  去除未启动状态数据后的半球谐振陀螺转动角度
图 8  重采样后的半球谐振陀螺转动角速度
特征最大值最小值平均值
$ \sqrt f $69.934969.930969.9340
$ f $4890.88814890.33644890.7693
$ {f^2} $2.319 2×1072.391 5×1072.392 0×107
$ {\mathrm{d}}f $0.0042?0.00050.0008
$ \sqrt f \cdot {\mathrm{d}}f $0.2950?0.03290.0540
$ f \cdot {\mathrm{d}}f $20.6294?2.30083.7751
$ {f^2} \cdot {\mathrm{d}}f $1.008 9×105?1.125 3×1041.846 3×104
$ {({\mathrm{d}}f)^2} $1.7795×10?501.6851×10?6
$ \sqrt f \cdot {({\mathrm{d}}f)^2} $0.001201.1785×10?4
$ f \cdot {({\mathrm{d}}f)^2} $0.087000.0082
$ {f^2} \cdot {({\mathrm{d}}f)^2} $425.5719040.3035
表 1  样本初选特征向量的统计特性
特征最大值最小值平均值
${{\boldsymbol{X}}_1}$18.6932?95.12302.600 9×10?14
${{\boldsymbol{X}}_2}$9.5840?14.0542?7.9554×10?13
${{\boldsymbol{X}}_3}$6.1600?10.3414?1.988 5×10?13
表 2  样本经核主成分分析筛选后的特征向量统计特性
特征最大值最小值平均值
${\boldsymbol{Y}}$18.6932?95.12302.600 9×10?14
表 3  样本转动角速度的统计特性
图 9  样本2的预测曲线及误差曲线
样本RMSE
多项式预测KPCA-GMDH
20.000680.00064
30.003800.00300
40.004400.00290
50.004900.00470
60.004100.00370
70.000600.00050
表 4  不同样本预测结果的均方根误差
图 10  融合样本A拟合样本4的预测曲线及误差曲线
图 11  融合样本B拟合样本4的预测曲线及误差曲线
图 12  融合样本C拟合样本4的预测曲线及误差曲线
图 13  融合样本D拟合样本4的预测曲线及误差曲线
融合样本$\sigma $
多项式GMDHKPCA-GMDH
A0.02580.01380.0133
B0.03240.01570.0149
C0.02930.01330.0128
D0.03950.01370.0125
表 5  不同建模方法的误差标准差对比
1 汪立新, 周小刚, 刘洁瑜, 等. 半球谐振陀螺惯性系统[M]. 西安: 西北工业大学出版社, 2011: 20–34.
2 周小刚, 汪立新, 佘嫱, 等 半球谐振陀螺温度补偿与实验研究[J]. 宇航学报, 2010, 31 (4): 1083- 1087
ZHOU Xiaogang, WANG Lixin, SHE Qiang, et al HRG temperature compensation and experiment research[J]. Journal of Astronautics, 2010, 31 (4): 1083- 1087
3 周强, 覃施甦, 方海斌, 等 半球谐振陀螺温度特性及补偿分析[J]. 压电与声光, 2015, 37 (5): 818- 820
ZHOU Qiang, QIN Shisu, FANG Haibin, et al The temperature characteristic and compensating analysis of HRG[J]. Piezoelectrics and Acoustooptics, 2015, 37 (5): 818- 820
4 吴宗收, 汪立新, 李新三, 等 一种改进PSO-ARMA半球谐振陀螺温度误差建模方法[J]. 北京航空航天大学学报, 2022, 48 (6): 1050- 1056
WU Zhongshou, WANG Lixin, LI Xinsan, et al An improved PSO-ARMA method for temperature error modeling of hemispherical resonator gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (6): 1050- 1056
5 李广胜, 蒋英杰, 孙志强, 等 基于AR多变量模型的半球谐振陀螺温度漂移建模[J]. 传感技术学报, 2009, 22 (10): 1442- 1445
LI Guangsheng, JIANG Yingjie, SUN Zhiqiang, et al Modeling temperature drift of HRG based on AR multi-variable model[J]. Chinese Journal of Sensors and Actuators, 2009, 22 (10): 1442- 1445
6 LI X S, LI C, SHEN Q, et al A multiple regression based method for indirect compensation of hemispherical resonator gyro temperature error[J]. Scientific Reports, 2023, 13: 6019
doi: 10.1038/s41598-023-31868-2
7 汪国新, 郝勇生, 苏志刚 基于KPCA-GG的火力发电设备状态诊断方法[J]. 东南大学学报:自然科学版, 2019, 49 (3): 542- 548
WANG Guoxin, HAO Yongsheng, SU Zhigang Condition diagnosis method for thermal power generation equipment based on KPCA-GG[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (3): 542- 548
8 黄泽丰, 杨莘, 邓慧萍, 等 基于MDLatLRR和KPCA的光场图像全聚焦融合[J]. 光子学报, 2023, 52 (4): 0410004
HUANG Zefeng, YANG Shen, DENG Huiping, el al Light field all-in-focus image fusion based on MDLatLRR and KPCA[J]. Acta Photonica Sincia, 2023, 52 (4): 0410004
doi: 10.3788/gzxb20235204.0410004
9 高运广, 蔡艳平, 盛安 基于模糊AGA-KPCA的MIMU传感器故障诊断方法[J]. 中国惯性技术学报, 2022, 30 (6): 835- 840
GAO Yunguang, CAI Yanping, SHENG An Fault diagnosis method for MIMU sensors based on fuzzy AGA-KPCA[J]. Journal of Chinese Inertial Technology, 2022, 30 (6): 835- 840
10 段伟, 蔡国军, 袁俊, 等 基于GMDH的地震液化场地侧向变形预测模型[J]. 东南大学学报: 自然科学版, 2021, 51 (2): 306- 311
DUAN Wei, CAI Guojun, YUAN Jun, et al Prediction model for liquefaction-induced lateral spread displacement based on GHDH[J]. Journal of Southeast University: Natural Science Edition, 2021, 51 (2): 306- 311
11 凯立德·艾尔巴兹. 基于机器学习技术的隧道掘进机性状的预测模型研究[D]. 上海: 上海交通大学, 2019: 35–46.
Khalid Elbaz. Performance prediction of tunnel boring machine by using machine learning techniques [D]. Shanghai: Shanghai Jiao Tong University, 2019: 35–46.
12 AHMADI A, ASADI Y, AMANI A M, et al Resilient model predictive adaptive control of networked Z-source inverters using GMDH[J]. IEEE Transactions on Smart Grid, 2022, 13 (5): 3723- 3734
doi: 10.1109/TSG.2022.3174250
13 XIE L, JIA Y, XIAO J, et al GMDH-based outlier detection model in classification problems[J]. Journal of Systems Science and Complexity, 2020, 33: 1516- 1532
doi: 10.1007/s11424-020-9002-6
14 BAND S S, MOHAMMADZADEH A, CSIBA P, et al Voltage regulation for photovoltaics-battery-fuel systems using adaptive group method of data handling neural networks (GMDH-NN)[J]. IEEE Access, 2020, 8: 213748- 213757
doi: 10.1109/ACCESS.2020.3037134
15 刘强, 秦泗钊 过程工业大数据建模研究展望[J]. 自动化学报, 2016, 42 (2): 161- 171
LIU Qiang, QIN Joe Perspectives on big data modeling of process industries[J]. Acta Automatica Sinica, 2016, 42 (2): 161- 171
16 王晓军. 基于大数据的风洞马赫数集成建模方法的研究[D]. 沈阳: 东北大学, 2016: 9–15.
WANG Xiaojun. The research of ensemble methods based on big data for the Mach number prediction in wind tunnel [D]. Shen Yang: Northeastern University, 2016: 9–15.
17 王龙晖. 基于并行计算的调节阀大数据智能分析及建模方法研究[D]. 济南: 山东大学, 2019: 81–90.
WANG Longhui. Research on intelligent analysis and modeling of control valve big data based on parallel computing [D]. Jinan: Shandong University, 2019: 81–90.
18 杨小佳. 基于腐蚀大数据技术的含Cr低合金钢耐蚀性能调控研究[D]. 北京: 北京科技大学, 2021: 98–110.
YANG Xiaojia. Research on the control of corrosion resistance of Cr-containing low-alloy steel based on corrosion big data technology [D]. Beijing: University of Science and Technology Beijing, 2021: 98–110.
19 陈效真, 周姣, 董燕琴, 等 大数据理论在高精度惯性导航系统测试技术中的应用[J]. 导航与控制, 2018, 17 (1): 11- 20
CHEN Xiaozhen, ZHOU Jiao, DONG Yanqin, et al Application of big data technology on test technology of high accuracy inertial navigation system[J]. Navigation and Control, 2018, 17 (1): 11- 20
20 王庆杰. 基于特征选择和时频分析的径流预测机器学习模型研究[D]. 乌鲁木齐: 新疆农业大学, 2022: 65–67.
WANG Qingjie. A machine learning model for runoff prediction based on feature selection and joint time-frequency analysis [D]. Urumqi: Xinjiang Agricultural University, 2022: 65–67.
21 DENG X, TIAN X, CHEN S, et al Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring[J]. IEEE Transactions on Control Systems Technology, 2019, 27 (6): 2526- 2540
doi: 10.1109/TCST.2018.2865413
22 孔祥玉, 曹泽豪, 安秋生, 等 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33 (9): 1537- 1548
KONG Xiangyu, CAO Zehao, AN Qiusheng, et al Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33 (9): 1537- 1548
23 徐田军, 王桂增 改进的GMDH方法及其在参数预报中的应用[J]. 控制与决策, 1994, (5): 367- 371
XU Tianjun, WANG Guizeng Improved GMDH algorithm and its application in parameter prediction[J]. Control and Decision, 1994, (5): 367- 371
24 姚泽楷, 蔡耀仪, 李诗文, 等 基于平滑样条曲线结合离散状态转移算法的拉曼光谱基线校正方法[J]. 中国激光, 2022, 49 (18): 1811001
YAO Zekai, CAI Yaoyi, LI Shiwen, et al Baseline correction for raman spectroscopy using cubic spline smoothing combined with discrete state transformation algorithm[J]. Chinese Journal of Lasers, 2022, 49 (18): 1811001
doi: 10.3788/CJL202249.1811001
[1] 刘德华 金伟良 张玉香. 光纤传感器与结构基体的应变传递关系[J]. J4, 2006, 40(11): 1847-1851.