Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2277-2284    DOI: 10.3785/j.issn.1008-973X.2023.11.015
环境与土木工程     
生活垃圾渗滤液蒸发母液固化
冯全祥1,2,3(),方艺民4,李骎5,郝润琴6,冷发光1,2,3,邓晓轩1,2,3,*()
1. 中国建筑科学研究院有限公司,北京 100013
2. 建筑安全与环境国家重点实验室,北京 100013
3. 国家建筑工程技术研究中心,北京 100013
4. 厦门嘉戎技术股份有限公司,福建 厦门 361112
5. 天津高能时代水处理科技有限公司,天津 300041
6. 北京市科学技术研究院 资源环境研究所,北京 100089
Solidification of evaporated mother liquor of domestic landfill leachate
Quan-xiang FENG1,2,3(),Yi-min FANG4,Qin LI5,Run-qin HAO6,Fa-guang LENG1,2,3,Xiao-xuan DENG1,2,3,*()
1. China Academy of Building Research Co. Ltd, Beijing 100013, China
2. State Key Laboratory of Building Safety and Environment, Beijing 100013, China
3. National Engineering Research Center of Building Technology, Beijing 100013, China
4. Xiamen Jiarong Technology Co. Ltd, Xiamen 361112, China
5. Tianjin High Energy Time Water Treatment Technology Co. Ltd, Tianjin 300041, China
6. Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
 全文: PDF(1216 KB)   HTML
摘要:

为了解决处置生活垃圾渗滤液蒸发母液时缺少适合的固化用胶凝材料的问题,以水泥、水泥+石灰和自配固化剂分别对某项目蒸发母液进行固化试验. 结果表明,蒸发母液固化后化学需氧量、氨氮质量浓度、油脂质量浓度和电导率等指标下降显著,重金属离子质量浓度限值也满足生活垃圾填埋场填埋要求. 水泥和水泥+石灰固化蒸发母液凝结时间长,强度低,无法满足浆体及时转场填埋的要求,而在采用自配固化剂后,浆体工艺和强度指标提升明显,符合快速转场的要求. 综合分析可知,固化剂在钙基膨润土和添加剂的协同作用下有效消除了蒸发母液对Ca2+的吸附,确保固化体系中生成了足量的钙矾石和水化硅酸钙并且都能稳定存在,保证了固化蒸发母液的快速凝结和强度稳定.

关键词: 生活垃圾渗滤液蒸发母液吸附抗压强度固化    
Abstract:

Cement, cement+lime and self-made hydraulic binder were used to solidify the evaporated mother liquor of a project respectively, in order to solve the problem of lack of suitable cementing materials for solidification when disposing the evaporated mother liquor of domestic landfill leachate. Results showed that after the evaporated mother liquor was solidified, the indicators such as chemical oxygen demand, mass concentration of ammonia nitrogen, mass concentration of grease and conductivity decreased significantly, and the mass concentrated limit of heavy metal ions also met the landfill requirements of domestic waste landfill. However, the evaporated mother liquor was solidified with cement and cement+lime, leading to a long setting time and low strength, which couldnot meet the requirement of transporting slurry to landfill in time. And after the self-made hydraulic binder was used, the slurry process and strength index were significantly improved, meeting the requirements of rapid transition. Comprehensive analysis shows that the self-made hydraulic binder effectively eliminates the absorption of Ca2+ by the evaporated mother liquor under the synergistic effect of calcium bentonite and additives, ensuring that sufficient ettringite and calcium silicate hydrate are generated in the curing system and can exist stably, thus ensuring the rapid setting and strength stability of the solidified evaporated mother liquor.

Key words: domestic landfill leachate    evaporated mother liquor    adsorption    compressive strength    solidification
收稿日期: 2022-11-14 出版日期: 2023-12-11
CLC:  X 703  
基金资助: 中国建筑科学研究院有限公司青年科研基金资助项目(20210122331030035)
通讯作者: 邓晓轩     E-mail: 1401782440@qq.com;732068011@qq.com
作者简介: 冯全祥(1991—),男,工程师,从事低碳胶凝材料研究. orcid.org/0000-0002-9370-3746. E-mail: 1401782440@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
冯全祥
方艺民
李骎
郝润琴
冷发光
邓晓轩

引用本文:

冯全祥,方艺民,李骎,郝润琴,冷发光,邓晓轩. 生活垃圾渗滤液蒸发母液固化[J]. 浙江大学学报(工学版), 2023, 57(11): 2277-2284.

Quan-xiang FENG,Yi-min FANG,Qin LI,Run-qin HAO,Fa-guang LENG,Xiao-xuan DENG. Solidification of evaporated mother liquor of domestic landfill leachate. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2277-2284.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.015        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2277

化学成分 wB/% 化学成分 wB/%
SiO2 2~4 CaO 21~25
Al2O3 24~28 MgO 1~2
Fe2O3 3~6 SO3 30~34
其他 3~5
表 1  添加剂主要化学成分
试样 固化蒸发母液
胶凝材料类别
φ1/% t/h φ2/(103 mL·m?3) f/MPa
3 d 7 d 28 d
1# 水泥 100 >72 1.280 无强度 无强度 无强度
2# 水泥+石灰 100 65 1.024 0.09 0.13 0.13
3# 固化剂 100 22 0 0.39 1.52 4.35
表 2  不同试样工艺指标和抗压强度的对比
试样 pH COD/
(mg·L?1)
ρ(NH4+-N)/
(mg·L?1)
σ/
(μS·cm?1
ρR/
(mg·L?1)
蒸发母液 4.10 8.88×104 2.18×104 4.84×105 9.12
1# 10.40 4.93×103 15.90 4.03×104 0.88
2# 12.20 5.90×103 5.74 3.03×104 1.14
3# 6.00 6.20×103 15.00 3.61×104 0.10
表 3  蒸发母液固化前后水质指标变化
重金属 ρ0/(mg·L?11) ρ/(mg·L?1
蒸发母液 1# 2# 3#
1)注:《生活垃圾填埋场污染控制标准》(GB 16889—2008)规定.
0.05 0.00076 0.00089 0.00055 0.00088
40.00 0.19000 0.07210 0.02440 0.04360
100.00 1.16000 0.02230 0.07640 0.43500
0.25 <0.10000 <0.10000 <0.10000 <0.10000
0.15 0.05660 <0.05000 <0.05000 <0.05000
0.02 <0.00800 <0.00800 <0.00800 <0.00800
25.00 0.04580 0.69700 0.57200 0.55700
0.50 0.75600 0.03260 0.02140 0.11400
0.30 2.10000 0.00790 0.00310 0.00280
总铬 4.50 0.91000 0.15200 0.08370 0.16800
六价铬 1.50 0.18900 0.11300 0.01200 0.01800
0.10 0.04360 0.00450 0.00300 0.00290
表 4  蒸发母液固化前后重金属质量浓度对比
图 1  固化后试样XRD图谱
图 2  试样中AFt主特征峰(2θ=9.1°)衍射强度对比
图 3  固化试样DSC-TG测试图
图 4  固化试样SEM形貌图
1 ZHOU H, MENG A H, LONG Y Q, et al An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value[J]. Renewable and Sustainable Energy Reviews, 2014, 36 (30): 107- 122
2 LI Y, JIN Y, LI J, et al Current situation and development of kitchen waste treatment in China[J]. Procedia Environmental Sciences, 2016, 31: 40- 49
doi: 10.1016/j.proenv.2016.02.006
3 鲁波 城市生活厨余垃圾渗滤液处理处置研究现状与发展趋势[J]. 皮革制作与环保科技, 2021, 2 (15): 98- 99
LU Bo Research status and development trend of urban kitchen waste leachate treatment and disposal[J]. Leather Manufacture and Environmental Technology, 2021, 2 (15): 98- 99
4 查大鹏 新时期垃圾渗滤液浓缩液处理技术研究[J]. 工程技术研究, 2019, 45 (16): 245- 246
ZHA Da-peng Research on treatment technology of landfill leachate concentrate in the new period[J]. Engineering and Technological Research, 2019, 45 (16): 245- 246
doi: 10.3969/j.issn.1671-3818.2019.16.119
5 吴太军, 文永林 生活垃圾焚烧厂渗滤液膜浓缩液处理工艺研究进展[J]. 黑龙江环境通报, 2018, 42 (3): 62- 65
WU Tai-jun, WEN Yong-lin Research progress in treatment technology of leachate membrane concentrate for domestic waste incineration plant[J]. Heilongjiang Environmental Journal, 2018, 42 (3): 62- 65
6 陈雷, 贺磊, 吴立群, 等 垃圾渗滤液的处理现状及发展方向[J]. 环境工程, 2016, 34 (Suppl.1): 295- 298
CHEN Lei, HE Lei, WU Li-qun, et al Status and development direction of landfill leachate treatment[J]. Environmental Engineering, 2016, 34 (Suppl.1): 295- 298
7 张其其. 垃圾渗滤液膜滤浓缩液Fenton预处理-回灌技术研究[D]. 杭州: 浙江大学, 2014.
ZHANG Qi-qi. Research on pretreatment by Fenton-reinjection into the landfill of concentrated leachate[D]. Hangzhou: Zhejiang University, 2014.
8 程振杰. 蒸发法处理垃圾渗滤液试验研究[D]. 北京: 北京工业大学, 2013.
CHENG Zhen-jie. Experimental study on landill leachate treatment by evaporation method[D]. Beijing: Beijing University of Technology, 2013.
9 王心月. 浸没燃烧蒸发对渗滤液有机物特性及镉络合潜力影响研究[D]. 北京: 清华大学, 2017.
WANG Xin-yue. Influence of submerged combustion evaporation on characteristics and binding potential for Cd of leachate organic matter[D]. Beijing: Tsinghua University, 2017.
10 WANG Z, LI J B, TAN W H, et al Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis[J]. Separation and Purification Technology, 2019, 208: 3- 11
11 王娟, 杨再福 Fenton氧化在废水处理中的应用[J]. 环境科学与技术, 2020, 28 (1): 59- 63
WANG Juan, YANG Zai-fu Application of Fenton oxidation technology in wastewater treatment[J]. Environmental Science and Technology, 2020, 28 (1): 59- 63
12 LIU X J, NOVAK J T, HE Z Synergistically coupling membrane electrochemical reactor with Fenton process to enhance landfill leachate treatment[J]. Chemosphere, 2020, 247: 1- 8
13 中华人民共和国环境保护部和国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准(征求意见稿)[EB/OL]. (2022-02-22). https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202203/t20220301_970201.html.
14 刘宇程, 祝梦, 陈明燕, 等 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34 (4): 07003
LIU Yu-cheng, ZHU Meng, CHEN Ming-yan, et al Research progress of graphene oxide / metal organic frameworks composite membrane in organic wastewater treatment[J]. Materials Reports, 2020, 34 (4): 07003
15 孙少龙, 陈勃言, 刘军 Fenton工艺处理垃圾渗滤液效果及经济性综述[J]. 环境卫生工程, 2020, 28 (1): 59- 63
SUN Shao-long, CHEN Bo-yan, LIU Jun Review on effect and economy of fenton process applied on leachate treatment[J]. Environmental Sanitation Engineering, 2020, 28 (1): 59- 63
16 邹帅文, 黄春林, 王羽旸 垃圾渗滤液膜浓缩液全量化处理探讨与实例[J]. 广州化工, 2021, 49 (24): 90- 92
ZOU Shuai-wen, HUANG Chun-lin, WANG Yu-yang Discussion and example of full quantitative disposal of landfill leachate membrance concentrate[J]. Guangzhou Chemical Industry, 2021, 49 (24): 90- 92
17 丁晶, 关淑妍, 赵庆良, 等 垃圾渗滤液膜滤浓缩液处理技术研究与应用进展[J]. 哈尔滨工业大学学报, 2021, 53 (11): 1- 13
DING Jing, GUAN Shu-yan, ZHAO Qing-liang, et al Research and application status of treatment methods of landfill leachate membrane concentrate[J]. Journal of Harbin Institute of Technology, 2021, 53 (11): 1- 13
18 谢炜炫, 王舒东, 郝润琴, 等 生活垃圾渗滤液膜浓缩液固化初探[J]. 环境科学与技术, 2020, 43 (9): 47- 52
XIE Wei-xuan, WANG Shu-dong, HAO Run-qin, et al Preliminary study on solidification of membrane retentate of landfill leachate[J]. Environmental Science and Technology, 2020, 43 (9): 47- 52
19 李月中, 乐晨, 王庆国, 等 蒸发-固化法处理垃圾渗滤液反渗透浓缩液的研究[J]. 环境科技, 2015, 28 (2): 10- 12
LI Yue-zhong, LE Chen, WANG Qing-guo, et al Study on thetreatment of concentrated water from reverse osmosis of bio-treated landfill leachate by evaporation and solidification process[J]. Environmental Science and Technology, 2015, 28 (2): 10- 12
20 国家质量监督检验检疫总局和中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法标准: GB/T 1346—2011 [S]. 北京: 中国标准出版社, 2011.
21 中华人民共和国环境保护部和国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准: GB 16889—2008 [S]. 北京: 中国环境科学出版社, 2008.
22 国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液: HJ/T 300—2007 [S]. 北京: 中国环境科学出版社, 2007.
23 廉慧珍. 建筑材料物相研究基础[M]. 北京: 清华大学出版社, 1996: 66.
24 王福卫, 史镕玮, 刘石艳, 等 广西钙基膨润土湿法提纯研究[J]. 化工矿物与加工, 2019, (10): 36- 39
WANG Fu-wei, SHI Rong-wei, LIU Shi-yan, et al Study on wet purification of Guangxi calcium bentonite[J]. Industrial Minerals and Processing, 2019, (10): 36- 39
25 陈文怡, 涂浩 TG-DSC技术在水泥研究中的应用[J]. 分析仪器, 2012, (2): 55- 58
CHEN Wen-yi, TU Hao Application of TG-DSC technique in the study of cement[J]. Analytical Instrumentation, 2012, (2): 55- 58
doi: 10.3969/j.issn.1001-232X.2012.02.014
26 齐添, 李水江, 张金荣, 等 含腐殖酸水泥土的强度特性研究[J]. 广州建筑, 2019, 47 (2): 21- 24
QI Tian, LI Shui-jiang, ZHANG Jin-rong, et al Study on strength characteristics of cement-soil containing humus[J]. Guangzhou Architecture, 2019, 47 (2): 21- 24
27 邓晓轩, 纪宪坤, 田均兵, 等 矿渣在尾砂胶结充填中的应用与研究进展[J]. 材料导报, 2016, 30 (5): 95- 100
DENG Xiao-xuan, JI Xian-kun, TIAN Jun-bing, et al Application and research progress of slag in cemented filled of tailings[J]. Materials Reports, 2016, 30 (5): 95- 100
28 李雪刚. 杭州海相软土的固化及其理论研究[D]. 杭州: 浙江大学, 2013.
LI Xue-gang. Theoretical study on stabilization of marine soft clay in Hangzhou[D]. Hangzhou: Zhejiang University, 2013.
29 邵玉芳. 含腐殖酸软土的加固研究[D]. 杭州: 浙江大学, 2006.
SHAO Yu-fang. Study on humus-containing soil stabilization[D]. Hangzhou: Zhejiang University, 2006.
30 CHIRDCHANIN MODMOLTIN, 陆江, KATSUTADA ONITSUKA 腐殖酸与盐分浓度对石灰加固土有明黏土的影响以及微观结构研究[J]. 岩土工程学报, 2004, 26 (2): 281- 286
CHIRDCHANIN M, LU J, KATSUTADA O Influence of humic acid and salt concentration on lime-stabilized ariake clays and microstructure research[J]. Chinese Journal of Geotechnical Engineering, 2004, 26 (2): 281- 286
31 赵刘义. 基于废油脂调质的剩余污泥厌氧酸化效能及脂肪酸累积特性研究[D], 郑州: 郑州大学, 2021.
ZHAO Liu-yi. Study on anaerobic acidification efficiency and fatty acid accumulation characteristics based on waste activated sludge conditioning with waste cooking oils[D]. Zhengzhou: Zhengzhou University, 2021.
32 杨华明, 张华, 张向超, 等 Ca-基膨润土制备重金属废水吸附剂的研究[J]. 金属矿山, 2004, (9): 57- 59
YANG Hua-ming, ZHANG Hua, ZHANG Xiang-chao, et al Investigation on preparation of Ca-bentonite sorbent for heavy metals wastewater treatment[J]. Metal Mine, 2004, (9): 57- 59
33 兰兴阳. 硫铝酸盐水泥固化土性能及机理分析研究[D]. 重庆: 重庆大学, 2019.
LAN Xing-yang. Research on properties and mechanism of sulphoaluminate cement solidified soil [D]. Chongqing: Chongqing University, 2019.
34 刘子铭. 基于钙矾石填充的有机质土加固试验研究[D]. 南京: 东南大学, 2017.
LIU Zi-ming. Experimental study on reinforcing the organic soil based on the filling function of ettringite[D]. Nanjing: Southeast University, 2019.
[1] 李丽华,李孜健,肖衡林,黄少平,刘一鸣. 稻壳灰-高炉矿渣固化膨胀土工程特性及机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1736-1745.
[2] 王钰轲,曹天才,宋迎宾,邵景干,余翔,董博文. 基于菌促方法和酶促方法的黄河泥沙加固参数试验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1100-1110.
[3] 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1740-1749.
[4] 郭萌,张玉茹,魏幸,王文静. 固胺负载SBA-15的石墨烯改性及其CO2吸附性能[J]. 浙江大学学报(工学版), 2022, 56(8): 1588-1596.
[5] 王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.
[6] 刘磊,潘权稳,王博,赵钦宇,江龙,何远新,周伟明,甘智华. 液氢容器真空夹层氢吸附剂研究进展[J]. 浙江大学学报(工学版), 2022, 56(11): 2194-2203.
[7] 田威,高芳芳,贺礼. 高温后碳纳米管混凝土力学性能及细观结构变化[J]. 浙江大学学报(工学版), 2022, 56(11): 2280-2289.
[8] 武恩宇,钱国栋,李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[9] 谭博军,陈斌,刘亚静,汪伟,李子森,汪营磊,肖川. 火炸药光固化3D打印成型[J]. 浙江大学学报(工学版), 2021, 55(8): 1594-1606.
[10] 何璇,周启星. 基于壳聚糖气凝胶的新型石油吸附剂研究进展[J]. 浙江大学学报(工学版), 2021, 55(7): 1368-1380.
[11] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[12] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[13] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[14] 朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.
[15] 罗华, 陈祖煜, 龚国芳, 赵宇, 荆留杰, 王超. 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1566-1574.