Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2194-2203    DOI: 10.3785/j.issn.1008-973X.2022.11.010
机械与能源工程     
液氢容器真空夹层氢吸附剂研究进展
刘磊1,2(),潘权稳2,王博2,赵钦宇2,江龙1,何远新1,3,周伟明4,甘智华1,2,*()
1. 浙江省制冷与低温技术重点实验室 浙江大学,浙江 杭州 310027
2. 浙大城市学院 低温中心,浙江 杭州 310015
3. 中车长江车辆有限公司 冷运装备研究所,湖北 武汉 430212
4. 全国锅炉压力容器标准化技术委员会,移动式压力容器分技术委员会,上海 200030
Progress of hydrogen adsorbents in vacuum jacket of liquid hydrogen vessels
Lei LIU1,2(),Quan-wen PAN2,Bo WANG2,Qin-yu ZHAO2,Long JIANG1,Yuan-xin HE1,3,Wei-ming ZHOU4,Zhi-hua GAN1,2,*()
1. Zhejiang Key Laboratory of Refrigeration and Cryogenic Technology, Zhejiang University, Hangzhou 310027, China
2. Cryogenics Center, Zhejiang University City College, Hangzhou 310015, China
3. Institute of Cold Transportation Equipment, Yangtze Corporation of China Railway Rolling Stock Corporation, Wuhan 430212, China
4. Mobile Pressure Vessel Subcommittee, National Boiler and Pressure Vessel Standardization Technical Committee, Shanghai 200030, China
 全文: PDF(1134 KB)   HTML
摘要:

基于液氢容器高效氢吸附剂对使用方式、材料改性、性能评价和用量计算的需求,讨论真空夹层中的气体负荷来源和真空寿命,总结液氢容器常用氢吸附剂的种类、材料以及吸附性能研究方法. 真空夹层主要的残余气体是材料放出的氢气,通过合理使用吸附剂可以显著延长容器寿命. 根据吸气机理可将氢吸附剂分为低温吸附剂、金属氧化物、离子交换沸石分子筛和非蒸散型吸气剂4类,并从实验测试和理论模型2个方面总结了吸附性能的研究方法.

关键词: 氢能液氢容器真空多层绝热氢吸附剂吸附性能    
Abstract:

The sources of gas load and vacuum life of the vacuum jacket were discussed based on the requirements of usage mode, material modification, performance evaluation and amount calculation for efficient hydrogen adsorbent in liquid hydrogen vessels. The types and ingredients of common hydrogen adsorbents and research methods of adsorption commonly used in liquid hydrogen containers were summarized. The hydrogen released by the materials was the main residual gas in the vacuum jacket and the vessel life can be significantly extended by the rational use of adsorbents. The hydrogen adsorbents can be classified into four categories according to adsorption mechanism: low temperature adsorbents, metal oxides, ion exchanged zeolite molecular sieves and non-evaporable getters. The research methods of adsorption performance were summarized in aspects of both experimental test and theoretical model.

Key words: hydrogen energy    liquid hydrogen vessel    vacuum multilayer insulation    hydrogen adsorbent    adsorption performance
收稿日期: 2022-07-08 出版日期: 2022-12-02
CLC:  TB 658  
基金资助: 广东省重点领域研发计划资助项目(2021B0101300004); 国家自然科学基金资助项目(52006190)
通讯作者: 甘智华     E-mail: 22127036@zju.edu.cn;gan_zhihua@zju.edu.cn
作者简介: 刘磊(1999—),男,硕士生,从事低温吸附研究. orcid.org/ 0000-0003-4219-2015. E-mail: 22127036@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘磊
潘权稳
王博
赵钦宇
江龙
何远新
周伟明
甘智华

引用本文:

刘磊,潘权稳,王博,赵钦宇,江龙,何远新,周伟明,甘智华. 液氢容器真空夹层氢吸附剂研究进展[J]. 浙江大学学报(工学版), 2022, 56(11): 2194-2203.

Lei LIU,Quan-wen PAN,Bo WANG,Qin-yu ZHAO,Long JIANG,Yuan-xin HE,Wei-ming ZHOU,Zhi-hua GAN. Progress of hydrogen adsorbents in vacuum jacket of liquid hydrogen vessels. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2194-2203.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.010        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2194

图 1  真空夹层气体负荷来源
放置位置 种类 吸氢机理 常用材料 液氢容器中的应用
低温侧
(低温吸附剂)
物理吸附剂 利用大比表面积和多孔结构捕集气体 活性炭、分子筛 当20 K时吸氢量大,但温度提高后性能明显下降
常温侧
(常温吸附剂)
金属氧化物 和H2的氧化还原反应 PdO 吸氢量大,但价格昂贵,吸氢存在一定危险
离子交换沸石分子筛 气体先由微孔物理吸附,再被交换的活性离子催化形成稳定氢键 Ag沸石分子筛 成本低,吸氢稳定,市场潜力大
非蒸散型吸气剂 气体在活性材料表面发生吸附、渗透并往体内扩散 Zr-V-Fe合金、Ti合金等 受限于激活温度和工艺,应用集中在国外
表 1  不同氢吸附剂的分类与比较
图 2  低温容器氢吸附剂典型布置
图 3  在77 K下金属氧化物的吸氢等温线[38]
氧化物 S/(m2·g?1 T/K QH/(cm3·g?1
Fe2O3 12.50 473.00
Pd-Fe2O3 12.00 293.00 0.01
WO3 2.50 700.00
Pd-WO3 2.50 293.00 0.01
NiO+Ni2O3 170.00 330.00
Pd-(NiO+Ni2O3) 170.00 293.00 0.10
CuO 100.00 300.00 3.00
Pd-CuO 100.00 293.00 50.00
Co3O4 140.00 293.00 15.00
Pd-Co3O4 135.00 293.00 180.00
MnO2 180.00 293.00 2.50
Pd-MnO2 180.00 293.00 286.00
PdO 293.00 110.00
Ag2O 1.30 293.00 1.50
表 2  金属氧化物掺Pd前后的吸氢变化[31]
图 4  管式吸气剂示意图[50]
图 5  静态定容法实验装置示意图
图 6  低温制冷机冷却的吸附室型静态定容法实验装置[57]
等温式类型 方程形式 模型特点
Langmuir $ \theta = \dfrac{{{k_1}p}}{{1+{k_1}p}} $ 单分子层吸附,
吸附热不变
Henry $\theta = { {{k} }_1}p$ 低压吸附, $ {k_1}\ll 1 $
BET $\theta = \dfrac{{cp}}{{({p_0} - p)[1+(c - 1){p /{{p_0}}}]}}$ 多分子层吸附,
各层吸附热为常数
Freundlich $\theta = {K_1}{p^{{1 / n}}}$ 吸附位数目随吸附
热指数性减少
Temkin $\displaystyle \theta = \dfrac{{RT}}{{\beta {q_0}}}\ln ({K_2}p)$ 吸附热随表面覆盖
度线性减少
DubDubinin-Radushkevch $\ln \theta = - B{(RT\ln ({{{p_0}} \mathord{\left/ {\vphantom {{{p_0}} p}} \right. } p}))^2}$ 低温下稀薄气体的吸附
表 3  常见吸附等温式类型[59]
图 7  吸附等温线模型和吸附势理论的应用
1 郑津洋 高安全低成本大容量高压储氢[J]. 浙江大学学报: 工学版, 2022, 54 (9): 1655- 1657
ZHENG Jin-yang High pressure hydrogen storage with high safety, low cost and large capacity[J]. Journal of Zhejiang University: Engineering science, 2022, 54 (9): 1655- 1657
2 郭志钒, 巨永林 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47 (6): 21- 29
GUO Zhi-fan, JU Yong-lin Status and problems of cryogenic liquid hydrogen storage[J]. Cryogenics and Superconductivity, 2019, 47 (6): 21- 29
3 李静媛, 赵永志, 郑津洋 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报: 工学版, 2015, 49 (7): 1389- 1394
LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (7): 1389- 1394
4 郑津洋, 刘自亮, 花争立, 等 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20 (1): 106- 115
ZHENG Jin-yang, LIU Zi-liang, HUA Zheng-li, et al Current status and challenges of hydrogen safety research[J]. Journal of Safety and Environment, 2020, 20 (1): 106- 115
5 高云飞, 王博, 王浩任, 等 液氢温区真空多层绝热材料研究进展[J]. 低温工程, 2021, (6): 12- 21
GAO Yun-fei, WANG Bo, WANG Hao-ren, et al Progress of vacuum multilayer insulation materials at liquid hydrogen temperatures[J]. Cryogenics, 2021, (6): 12- 21
6 陈国邦, 张鹏. 低温绝热与传热技术[M]. 北京: 科学出版社, 2004: 70-92.
7 甘智华, 王博, 刘东立, 等 空间液氦温区机械式制冷技术发展现状及趋势[J]. 浙江大学学报: 工学版, 2012, 46 (12): 2160- 2177
GAN Zhi-hua, WANG Bo, LIU Dong-li, et al Status and development trends of space mechanical refrigeration system at liquid helium temperature[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (12): 2160- 2177
8 甘智华, 陶轩, 刘东立, 等 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报: 工学版, 2015, 49 (10): 1821- 1835
GAN Zhi-hua, TAO Xuan, LIU Dong-li, et al Development status of space cryogenic technology at liquid helium temperature in Japan[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (10): 1821- 1835
9 WANG B, LUO R Y, CHEN H, et al Characterization and monitoring of vacuum pressure of tank containers with multilayer insulation for cryogenic clean fuels storage and transportation[J]. Applied Thermal Engineering, 2021, 187: 116569
doi: 10.1016/j.applthermaleng.2021.116569
10 中国技术监督情报协会. 固定式真空绝热液氢压力容器专项技术要求: T/CATSI 05006 [S]. 2021.
11 张以忱, 黄英. 真空材料[M]. 北京: 冶金工业出版社, 2005: 35-67.
12 ISHIKAWA Y, NEMANIC V An overview of methods to suppress hydrogen outgassing rate from austenitic stainless steel with reference to UHV and EXV[J]. Vacuum, 2003, 69 (4): 501- 512
doi: 10.1016/S0042-207X(02)00562-6
13 郑晨, 王博, 高云飞, 等 加热烘烤对玻璃纤维纸放气特性的影响[J]. 低温工程, 2020, (5): 54- 59
ZHENG Chen, WANG Bo, GAO Yun-fei, et al Effect of heating baking on the outgassing of glass fiber paper[J]. Cryogenics, 2020, (5): 54- 59
14 郑晨. LNG罐式集装箱关键组成材料的真空放气特性及测试方法研究[D]. 杭州: 中国计量大学, 2021: 36-53.
ZHENG Chen. Research on vacuum outgassing characteristics and testing methods of key materials of LNG tank container [D]. Hangzhou: China Jiliang University, 2021: 36-53.
15 GRINHAM R, CHEW A A review of outgassing and methods for its reduction[J]. Applied Science and Convergence Technology, 2017, 26 (5): 95- 109
doi: 10.5757/ASCT.2017.26.5.95
16 李晓峰, 黄强华, 陈光奇, 等 氢对低温容器真空寿命影响的模拟试验研究[J]. 低温工程, 2019, (5): 64- 69
LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, et al Simulated test study on effect of hydrogen on vacuum life of cryogenic vessels[J]. Cryogenics, 2019, (5): 64- 69
17 李晓峰, 黄强华, 陈光奇, 等 低温绝热气瓶真空寿命模拟试验研究[J]. 真空, 2020, 57 (1): 56- 61
LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, et al Simulated experimental study on vacuum life of cryogenic insulated cylinders[J]. Vacuum, 2020, 57 (1): 56- 61
18 毕龙生, 陈光奇 多层绝热低温容器真空夹层中的残余气体质谱分析[J]. 真空科学与技术, 1987, 7 (5): 325- 330
BI Long-sheng, CHEN Guang-qi Mass spectrometric analysis of the residual gases in the narrow vacuum space of multilayer insulation of cryogenic vessel[J]. Chinese Journal of Vacuum Science and Technology, 1987, 7 (5): 325- 330
19 PORTA P D Gas problem and gettering in sealed-off vacuum devices[J]. Vacuum, 1996, 47 (6): 771- 777
20 FREMEREY J K Residual gas: traditional understanding and new experimental results[J]. Vacuum, 1999, 53 (1): 197- 201
21 HONG S S, SHIN Y H, KIM J T Residual gas survey of stainless steel 304 extreme high vacuum chamber with hot cathode ionization gauge[J]. Measurement, 2008, 41 (9): 1026- 1031
doi: 10.1016/j.measurement.2008.02.006
22 FESMIRE J E, JOHNSON W L Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems[J]. Cryogenics, 2018, 89: 58- 75
doi: 10.1016/j.cryogenics.2017.11.004
23 何晓冬, 朱鸣, 陈光奇, 等 低温吸附剂的低温低压吸附等温线分布研究[J]. 中国特种设备安全, 2021, 37 (4): 18- 23,74
HE Xiao-dong, ZHU Ming, CHEN Guang-qi, et al Study on isotherm distribution of low temperature and low pressure adsorption of low temperature adsorbent[J]. China Special Equipment Safety, 2021, 37 (4): 18- 23,74
24 谢斯卫, 朱鸣, 汪荣顺, 等 活性炭在高真空多层绝热中液氮温度下的吸气性能[J]. 低温与超导, 2012, 40 (8): 12- 15
XIE Si-wei, ZHU Ming, WANG Rong-shun, et al Adsorption performance of activated carbon in high vacuum multilayer insulation at liquid nitrogen temperature[J]. Cryogenics and Superconductivity, 2012, 40 (8): 12- 15
25 徐烈, 方荣生, 马庆芳, 等. 低温容器—设计、制造与使用[M]. 北京: 机械工业出版社, 1987: 354-358.
26 李中胜, 高香院, 杨挺 GH-0椰壳活性炭与5A分子筛混合吸附剂在低温低压下的吸附性能[J]. 低温工程, 1996, (4): 5
LI Zhong-sheng, GAO Xiang-yuan, YANG Ting Adsorption performance of GH-0 coconut shell activated carbon and 5A molecular sieve mixture adsorbent at low temperature and low pressure[J]. Cryogenics, 1996, (4): 5
27 IKEMOTO N, KAWAKAMI T, YONEHARA K, et al Adsorption of hydrogen and deuterium on A-type zeolites at 77 K after various heat treatments[J]. Fusion Engineering and Design, 2020, 158: 111701
doi: 10.1016/j.fusengdes.2020.111701
28 何晓冬, 黄强华, 陈光奇, 等 低温吸附剂袋对低温绝热气瓶真空影响的评价研究[J]. 真空与低温, 2020, 26 (4): 283- 287
HE Xiao-dong, HUANG Qiang-hua, CHEN Guang-qi, et al Nonwoven molecular sieve package on vacuum interlayer of cryogenic insulated cylinder[J]. Vacuum and Cryogenics, 2020, 26 (4): 283- 287
29 BOFFITO C, SCHIABEL A, GALLITOGNOTTA A. Thermally insulating jacket and related process: US, 5408832 [P]. 1995-04-25.
30 FRANCIS A W, CHEUNG H. Means for improving thermal insulation space: US, 3114469 [P]. 1963-12-17.
31 BELOUSOV V M, VASYLYEV M A, LYASHENKO L V, et al The low-temperature reduction of Pd-doped transition metal oxide surfaces with hydrogen[J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2003, 91 (2): 143- 150
32 曾宇梧, 陈树军, 汪荣顺 高真空多层绝热结构中一氧化钯吸氢特性研究[J]. 低温与超导, 2008, 36 (7): 4- 8
ZENG Yu-wu, CHEN Shu-jun, WANG Rong-shun Hydrogen absorption properties of palladium oxide in a multilayer insulated vessel[J]. Cryogenics & Superconductivity, 2008, 36 (7): 4- 8
33 谢斯卫. 高真空多层绝热低温容器内吸气剂的吸气特性研究[D]. 上海: 上海交通大学, 2013: 42-50.
XIE Si-wei. Study of getter absorbing performance in high vacuum multilayer insulation cryogenic vessel [D]. Shanghai: Shanghai Jiao Tong University, 2013: 42-50.
34 王健, 战颖, 魏蔚, 等 应用于低温绝热气瓶的复合吸氢剂的质量优化和吸附性能[J]. 真空科学与技术学报, 2016, 36 (9): 975- 980
WANG Jian, ZHAN Ying, WEI Wei, et al H2 adsorption properties of novel composite getter for vacuum insulated cryogenic tank [J]. Chinese Journal of Vacuum Science and Technology, 2016, 36 (9): 975- 980
35 WANG J, ZHAN Y, WEI W, et al A new cost effective composite getter for application in high-vacuum-multilayer-insulation tank[J]. Vacuum, 2016, 131: 44- 50
doi: 10.1016/j.vacuum.2016.05.025
36 WANG J, ZHAN Y, WANG W, et al Optimization and performance of highly efficient hydrogen getter applied in high vacuum multilayer insulation cryogenic tank[J]. Vacuum, 2018, 149: 87- 92
doi: 10.1016/j.vacuum.2017.12.009
37 王健, 汪荣顺. 利用槽车余热去除高真空多层绝热槽罐夹层内氢气的装置: 201410310912.9 [P]. 2014-10-29.
38 陈叔平, 白彪坤, 成永军, 等 真空条件下氧化铂吸氢特性与微观结构研究[J]. 低温工程, 2020, (6): 26- 32
CHEN Shu-ping, BAI Biao-kun, CHENG Yong-jun, et al Experimental study on hydrogen absorption characteristics and microstructure of platinum oxide under vacuum[J]. Cryogenics, 2020, (6): 26- 32
39 白彪坤. 真空条件下吸附剂吸附性能实验研究[D]. 兰州: 兰州理工大学, 2020: 42-52.
BAI Biao-kun. Experimental study on the gas absorption performance of adsorbents under vacuum conditions [D]. Lanzhou: Lanzhou University of Technology, 2020: 42-52.
40 陈树军, 汪荣顺, 魏蔚, 等 几种组合吸附剂的吸氢等温线的测定及分析[J]. 真空科学与技术学报, 2009, 29 (4): 435- 439
CHEN Shu-jun, WANG Rong-shun, WEI Wei, et al Measurements and analysis of H2 adsorption isotherms of combinational adsorbents [J]. Chinese Journal of Vacuum Science and Technology, 2009, 29 (4): 435- 439
41 陈树军, 汪荣顺, 李祥东, 等 真空储罐中复合吸附剂吸氢性能的试验研究[J]. 上海交通大学学报, 2009, 43 (10): 1605- 1608
CHEN Shu-jun, WANG Rong-shun, LI Xiang-Dong, et al Experimental investigation on H2 adsorption performance of composite adsorbent in vacuum tank [J]. Journal of Shanghai Jiaotong University, 2009, 43 (10): 1605- 1608
42 CHEN S J, LI X D, WANG R S, et al Experimental investigation on hydrogen adsorption performance of composite adsorbent in the tank with high vacuum multilayer insulation[J]. Vacuum, 2009, 83 (9): 1184- 1190
doi: 10.1016/j.vacuum.2009.03.007
43 MATSCH L C, WANG D I, RABO J A, et al Surface area, pore size distribution and microstructure of vacuum getter[J]. Vacuum, 2011, 85 (10): 909- 914
doi: 10.1016/j.vacuum.2010.11.012
44 MATSCH L C, WANG D I, RABO J A, et al. Apparatus for improving vacuum insulation: US, 3108706 [P]. 1963-10-29.
45 王健, 战颖, 魏蔚, 等 Ag400直接替代PdO应用于高真空多层绝热储罐中的研究[J]. 真空科学与技术学报, 2017, 37 (1): 1- 6
WANG Jian, ZHAN Ying, WEI Wei, et al Novel composite getter material of Ag400 for high vacuum multilayer insulation tank[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37 (1): 1- 6
46 于洋. 吸气剂在高真空多层绝热设备中工作机理及性能优化研究[D]. 兰州: 兰州理工大学, 2021: 31-49.
YU Yang. Working mechanism and performance optimization of getters in high-vacuum-multilayer insulation equipment [D]. Lanzhou: Lanzhou University of Technology, 2021: 31-49.
47 YU Y, ZHU M, HUANG Q H, et al Sorption properties of novel-fashioned low-cost hydrogen getters in a high-vacuum-multilayer insulation structure[J]. Vacuum, 2021, 192: 110452
doi: 10.1016/j.vacuum.2021.110452
48 刘超卓, 施立群, 徐世林, 等 吸气剂材料的吸氢动力学理论[J]. 原子能科学技术, 2004, 38 (5): 399- 404
LIU Chao-zhuo, SHI Li-qun, XU Shi-li, et al Kinetic theory of hydrogen uptake for getter materials[J]. Atomic Energy Science and Technology, 2004, 38 (5): 399- 404
49 宋伊, 冯焱, 成永军, 等 非蒸散型吸气材料研究现状及进展[J]. 中国有色金属学报, 2021, 31 (8): 2160- 2170
SONG Yi, FENG Yan, CHENG Yong-jun, et al Research status and progress of non-evaporable getter for electronic vacuum devices[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (8): 2160- 2170
50 LONDER H, MYNENI G R, ADDERLEY P, et al New high capacity getter for vacuum insulated mobile LH2 storage tank systems [J]. Vacuum, 2007, 82 (4): 431- 434
doi: 10.1016/j.vacuum.2007.07.063
51 BOFFITO C, DONI F. Getter materials for the vacuum insulation of liquid hydrogen storage vessels or transport lines: US, 5678724 [P]. 1997-10-21.
52 OKSENIUK I I, LITVINOV V O, SHEVCHENKO D I, et al Hydrogen interaction with Zr-based getter alloys in high vacuum conditions: In situ SIMS-TPD studies[J]. Vacuum, 2022, 197: 110861
doi: 10.1016/j.vacuum.2021.110861
53 HSU I, MILLS B E. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at varions temperatures [R]. Materials Chemistry Department, 8223, Sandia National Laboratories, 2010.
54 冯天佑, 陈联, 朱建炳, 等 锆钒铁吸气剂的研究现状及进展[J]. 真空与低温, 2017, 23 (1): 7- 12
FENG Tian-you, CHEN Lian, ZHU Jian-bing, et al Research status and development of ZrVFe getter[J]. Vacuum and Cryogenics, 2017, 23 (1): 7- 12
55 冯天佑, 朱建炳, 陈联, 等 锆钒铁不同工作温度下吸氢性能的实验研究[J]. 真空科学与技术学报, 2017, 37 (8): 776- 780
FENG Tian-you, ZHU Jian-bing, CHEN Lian, et al Experimental study on hydrogen sorption at different working temperature of ZrVFe[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37 (8): 776- 780
56 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 北京: 化学工业出版社, 2005.
57 CHEN L B, KONG C H, WU X L, et al Specific heat capacities and flow resistance of an activated carbon with adsorbed helium as a regenerator material in refrigerators[J]. New Carbon Materials, 2018, 33 (1): 47- 52
doi: 10.1016/S1872-5805(18)60326-9
58 XI X T, WANG J, CHEN L B, et al Adsorption characteristics of helium on an activated carbon at 4-10 K and its prospective application in 4 K-class regenerative cryocoolers[J]. New Carbon Materials, 2019, 34 (6): 524- 532
doi: 10.1016/S1872-5805(19)60028-4
59 王欲知, 陈旭. 真空技术第2版[M]. 北京: 北京航空航天大学出版社, 2007: 1-574.
60 邹龙辉, 徐鹏, 朱伟平, 等 吸附势理论在10K低温吸附器设计中的应用[J]. 低温工程, 2016, (1): 19- 24
ZHOU Long-hui, XU Peng, ZHU Wei-ping, et al Application of adsorption potential theory on design of a 10 K cryogenic adsorber[J]. Cryogenics, 2016, (1): 19- 24
[1] 王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.
[2] 何璇,周启星. 基于壳聚糖气凝胶的新型石油吸附剂研究进展[J]. 浙江大学学报(工学版), 2021, 55(7): 1368-1380.