Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2187-2193    DOI: 10.3785/j.issn.1008-973X.2022.11.009
机械与能源工程     
基于层次分析-熵值法的氢内燃机异常燃烧风险评估
杨振中(),吴佳凯,徐建伦,卜子东,张保良,王铭浩
华北水利水电大学 机械学院,河南 郑州 450045
Abnormal combustion risk assessment of hydrogen internal combustion engine based on AHP-entropy method
Zhen-zhong YANG(),Jia-kai WU,Jian-lun XU,Zi-dong BU,Bao-liang ZHANG,Ming-hao WANG
School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
 全文: PDF(1295 KB)   HTML
摘要:

为了综合评估进气道喷射(PFI)氢内燃机异常燃烧风险,基于层次分析法(AHP)构建了异常燃烧风险系数模型,分别探究喷氢参数对指标层(异常燃烧特征参数)及目标层(异常燃烧风险系数)的影响. 结果表明:通过改变喷氢参数,可以使进气道残余氢气量下降33.4%~41.6%,显著降低了回火的可能性. 当喷氢角度为30°~45°、喷氢流量为4.36~4.96 kg/h时,缸内混合气均匀性系数较大,有利于组织燃烧,却不能保证炽热区域温度等参数处于较低水准. 所构建的异常燃烧风险系数模型能够结合多个特征参数对氢内燃机异常燃烧(早燃及回火)风险进行有效评估. 当喷氢角度为45°、喷氢流量为4.96 kg/h时,各项特征参数均处于合理区间,异常燃烧风险系数下降了3.6%~6.8%,降低了异常燃烧的可能性.

关键词: 氢内燃机层次分析-熵值法喷氢参数早燃回火    
Abstract:

An abnormal combustion risk coefficient model was constructed based on the analytic hierarchy process (AHP) to comprehensively evaluate the abnormal combustion risk of port fuel injection (PFI) hydrogen internal combustion engine. The effects of hydrogen injection parameters on the indicator layer (abnormal combustion characteristic parameters) and the target layer (abnormal combustion risk coefficient) were investigated respectively. The results showed that by changing the hydrogen injection parameters, the maximum amount of residual hydrogen in intake port decreased by 33.4% to 41.6%. The possibility of backfire was reduced significantly. When the hydrogen injection angle was 30°?45° and the hydrogen injection flow rate was 4.36?4.96 kg/h, the in-cylinder mixture uniformity coefficient was large. The hydrogen injection parameters were favorable for organizing the combustion, but the hydrogen injection parameters could not ensure that parameters such as the incandescent area temperature were at a low level. The constructed abnormal combustion risk coefficient model could combine several characteristic parameters for effective assessment of abnormal combustion risk of hydrogen internal combustion engines. When the hydrogen injection angle was 45° and the hydrogen injection flow rate was 4.96 kg/h, all the characteristic parameters were in a reasonable range. The abnormal combustion risk coefficient decreased by 3.6% to 6.8% and the possibility of abnormal combustion was reduced.

Key words: hydrogen internal combustion engine    AHP-entropy method    hydrogen injection parameter    preignition    backfire
收稿日期: 2021-12-08 出版日期: 2022-12-02
CLC:  TK 46+3  
基金资助: 中原英才计划项目(育才系列)(ZYYCYU202012112); 河南省高层次特殊人才支持“中原千人计划”领军人才项目(ZYQR201810075)
作者简介: 杨振中(1957—),男,教授,从事发动机工作过程优化控制及氢燃料发动机研究. orcid.org/0000-0001-9512-2921. E-mail: yzzho@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨振中
吴佳凯
徐建伦
卜子东
张保良
王铭浩

引用本文:

杨振中,吴佳凯,徐建伦,卜子东,张保良,王铭浩. 基于层次分析-熵值法的氢内燃机异常燃烧风险评估[J]. 浙江大学学报(工学版), 2022, 56(11): 2187-2193.

Zhen-zhong YANG,Jia-kai WU,Jian-lun XU,Zi-dong BU,Bao-liang ZHANG,Ming-hao WANG. Abnormal combustion risk assessment of hydrogen internal combustion engine based on AHP-entropy method. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2187-2193.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.009        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2187

参数 数值
连杆长度/mm 137.0
缸径/mm 94.0
行程/mm 85.0
压缩比 9.7
最大功率/kW 30.0
最大功率转速/(r·min?1) 6 000
最大扭矩/(N·m) 51.0
表 1  内燃机主要参数
图 1  氢燃料内燃机3D模型
参数 数值
当量比 0.50 0.50 0.67 0.67
喷氢时刻/℃A 708 708 698 698
喷氢流量/(kg·h?1) 4.36 4.96 5.29 6.12
喷氢角度/(°) 20 30 45 60
表 2  主要实验参数的取值
图 2  异常燃烧风险系数模型结构
图 3  层次分析-熵值法计算流程
图 4  试验与仿真的缸压曲线对比
图 5  不同喷氢参数下进气道残余氢气量
图 6  混合气均匀性系数随喷氢流量的变化
图 7  炽热区域持续期随喷氢流量的变化
图 8  炽热区域温度随及排气终了气缸温度随喷氢流量的变化
图 9  不同喷氢参数下异常燃烧风险系数的变化
1 ZHAO Y D, YANG J J, LI Y, et al A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future[J]. International Journal of Hydrogen Energy, 2022, 47 (2): 728- 734
doi: 10.1016/j.ijhydene.2021.10.084
2 杜天申, 许沧粟, 王振子, 等 氢/汽油双燃料燃烧过程中有害排放物生成机理研究[J]. 浙江大学学报: 自然科学版, 1996, 30 (1): 42- 48
DU Tian-shen, XU Cang-li, WANG Zhen-zi, et al Research on the formation mechanism of harmful emissions during the combustion of hydrogen/gasoline dual fuel[J]. Journal of Zhejiang University: Natural Science, 1996, 30 (1): 42- 48
3 AKAL D, ÖZTUNA S, BÜYÜKAKIN M K A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect[J]. International Journal of Hydrogen Energy, 2020, 45 (60): 35257- 35268
doi: 10.1016/j.ijhydene.2020.02.001
4 ZAREEI J, ROHANI A Optimization and study of performance parameters in an engine fueled with hydrogen[J]. International Journal of Hydrogen Energy, 2020, 45 (1): 322- 336
doi: 10.1016/j.ijhydene.2019.10.250
5 LUO Q H, SUN B G Inducing factors and frequency of combustion knock in hydrogen internal combustion engines[J]. International Journal of Hydrogen Energy, 2016, 41 (36): 16296- 16305
doi: 10.1016/j.ijhydene.2016.05.257
6 VERHELSF S, WALLNER T Hydrogen-fueled internal combustion engines[J]. Progress in Energy and Combustion Science, 2009, 35 (6): 490- 527
doi: 10.1016/j.pecs.2009.08.001
7 YANG Z Z, ZHANG F, WANG L J, et al Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine[J]. Energy, 2018, 147: 715- 728
doi: 10.1016/j.energy.2018.01.068
8 WANG L J, YANG Z Z, HUANG Y, et al The effect of hydrogen injection parameters on the quality of hydrogen–air mixture formation for a PFI hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2017, 42 (37): 23832- 23845
doi: 10.1016/j.ijhydene.2017.04.086
9 DUAN J F, LIU F S, SUN B G Backfire control and power enhance-ment of a hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2014, 39 (9): 4581- 4589
doi: 10.1016/j.ijhydene.2013.12.175
10 LI Y, GAO W Z, ZHANG P, et al Effects study of injection strategies on hydrogen-air formation and performance of hydrogen direct injection internal combustion engine[J]. International Journal of Hydrogen Energy, 2019, 44 (47): 26000- 26011
doi: 10.1016/j.ijhydene.2019.08.055
11 DIÉGUEZ P M, URROZ J C, SÁINZ D, et al Characterization of combustion anomalies in a hydrogen-fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration and acoustic measurements[J]. Energy Conversion and Management, 2018, 172: 67- 80
doi: 10.1016/j.enconman.2018.06.115
12 YANG Z Z, WANG L J, HE M L, et al Research on optimal control to resolve the contradictions between restricting abnormal combustion and improving power output in hydrogen fueled engines[J]. International Journal of Hydrogen Energy, 2012, 37 (1): 774- 82
doi: 10.1016/j.ijhydene.2011.04.062
13 YAN B H, GU H Y, YANG Y H, et al Theoretical models of turbulent flow in rolling motion[J]. Progress in Nuclear Energy, 2010, 52 (6): 563- 568
doi: 10.1016/j.pnucene.2010.01.009
14 KARANIK M, WANDERER L, GOMEZRUIZ J A, et al Reconstruction methods for AHP pairwise matrices: how reliable are they?[J]. Applied Mathematics and Computation, 2016, 279: 103- 124
doi: 10.1016/j.amc.2016.01.008
15 CHINTALA V, SUBRAMANIAN K A Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode[J]. Energy, 2017, 138: 197- 209
doi: 10.1016/j.energy.2017.07.068
16 LUO Y, ZHAO C H An overview of pre-ignition of Hydrogen engine[J]. Journal of Scientific Research and Reports, 2020, 26 (10): 1- 7
17 WONG Y K, KARIM G A A kinetic examination of the effects of the presence of some gaseous fuels and preignition reaction products with hydrogen in engines[J]. International Journal of Hydrogen Energy, 1999, 24 (5): 473- 478
doi: 10.1016/S0360-3199(98)00097-4
No related articles found!