计算机技术 |
|
|
|
|
基于物理信息神经网络的Burgers-Fisher方程求解方法 |
徐健(),朱海龙*(),朱江乐,李春忠 |
安徽财经大学 统计与应用数学学院,安徽 蚌埠 233030 |
|
Solution approach of Burgers-Fisher equation based on physics-informed neural networks |
Jian XU(),Hai-long ZHU*(),Jiang-le ZHU,Chun-zhong LI |
School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China |
引用本文:
徐健,朱海龙,朱江乐,李春忠. 基于物理信息神经网络的Burgers-Fisher方程求解方法[J]. 浙江大学学报(工学版), 2023, 57(11): 2160-2169.
Jian XU,Hai-long ZHU,Jiang-le ZHU,Chun-zhong LI. Solution approach of Burgers-Fisher equation based on physics-informed neural networks. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2160-2169.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.003
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2160
|
1 |
王意存, 邢江宽, 罗坤, 等 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报: 工学版, 2022, 56 (10): 1375- 1383 WANG Yi-cun, XING Jiang-kuan, LUO Kun, et al Solving combustion chemical differential equations via physics-informed neural network[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (10): 1375- 1383
|
2 |
AMES W F. Numerical methods for partial differential equations [M]. [s. l. ]: Academic press, 1992.
|
3 |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686- 707
doi: 10.1016/j.jcp.2018.10.045
|
4 |
李野, 陈松灿 基于物理信息的神经网络: 最新进展与展望[J]. 计算机科学, 2022, 49 (4): 254- 262 LI Ye, CHEN Song-can Physics-informed neural networks: recent advances and prospects[J]. Computer Science, 2022, 49 (4): 254- 262
doi: 10.11896/jsjkx.210500158
|
5 |
LU L, MENG X, MAO Z, et al DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63 (1): 208- 228
doi: 10.1137/19M1274067
|
6 |
LIN S, CHEN Y A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions[J]. Journal of Computational Physics, 2022, 457: 111053
doi: 10.1016/j.jcp.2022.111053
|
7 |
LIN S, CHEN Y Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions[J]. Physica D: Nonlinear Phenomena, 2023, 445: 133629
doi: 10.1016/j.physd.2022.133629
|
8 |
MIAO Z W, CHEN Y Physics-informed neural networks method in high-dimensional integrable systems[J]. Modern Physics Letters B, 2022, 36 (1): 2150531
doi: 10.1142/S021798492150531X
|
9 |
PU J C, CHEN Y Data-driven forward-inverse problems for Yajima–Oikawa system using deep learning with parameter regularization[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 118: 107051
doi: 10.1016/j.cnsns.2022.107051
|
10 |
潘悦悦, 吴立飞, 杨晓忠 Burgers-Fisher方程改进的交替分段Crank-Nicolson并行差分方法[J]. 高校应用数学学报A辑, 2021, 36 (2): 193- 207 PAN Yue-yue, WU Li-fei, YANG Xiao-zhong The improved alternating segment Crank-Nicolson parallel difference method for Burgers-Fisher equation[J]. Applied Mathematics A Journal of Chinese Universities: Ser. A, 2021, 36 (2): 193- 207
doi: 10.13299/j.cnki.amjcu.002168
|
11 |
KUMAR S, SAHA RAY S Numerical treatment for Burgers-Fisher and generalized Burgers-Fisher equations[J]. Mathematical Sciences, 2021, 15 (1): 21- 28
doi: 10.1007/s40096-020-00356-3
|
12 |
ISMAIL H N, RASLAN K, ABD RABBOH A A Adomian decomposition method for Burger’s-Huxley and Burger’s-Fisher equations[J]. Applied Mathematics and Computation, 2004, 159 (1): 291- 301
doi: 10.1016/j.amc.2003.10.050
|
13 |
RASHIDI M, GANJI D, DINARVAND S Explicit analytical solutions of the generalized Burger and Burger-Fisher equations by homotopy perturbation method[J]. Numerical Methods for Partial Differential Equations, 2009, 25 (2): 409- 417
doi: 10.1002/num.20350
|
14 |
JAVIDI M Spectral collocation method for the solution of the generalized Burger-Fisher equation[J]. Applied Mathematics and Computation, 2006, 174 (1): 345- 352
doi: 10.1016/j.amc.2005.04.084
|
15 |
ZHAO T G, LI C, ZANG Z L, et al Chebyshev-Legendre pseudo-spectral method for the generalised Burgers-Fisher equation[J]. Applied Mathematical Modelling, 2012, 36 (3): 1046- 1056
doi: 10.1016/j.apm.2011.07.059
|
16 |
GOLBABAI A, JAVIDI M A spectral domain decomposition approach for the generalized Burger's-Fisher equation[J]. Chaos Solitons and Fractals, 2009, 39 (1): 385- 392
doi: 10.1016/j.chaos.2007.04.013
|
17 |
ALOTAIBI B M, SHAH R S, NONLAOPON K, et al Investigation of the time-fractional generalized Burgers-Fisher equation via novel techniques[J]. Symmetry-Basel, 2023, 15 (1): 108
|
18 |
赵国忠, 郭怀民, 郭鹏云, 等 求解广义Burgers-Huxley方程和广义Burgers-Fisher方程的一类局部间断Petrov-Galerkin方法研究(英文)[J]. 高等学校计算数学学报, 2020, 42 (3): 193- 208 ZHAO Guo-zhong, GUO Huai-min, GUO Peng-yun, et al A local discontinuous Petrov-Galerkin method for the generalized Burgers-Huxley equation and Burgers-Fisher equation[J]. Numerical Mathematics: A Journal of Chinese Universities, 2020, 42 (3): 193- 208
|
19 |
SINGH A, DAHIYA S, SINGH S P A fourth-order B-spline collocation method for nonlinear Burgers-Fisher equation[J]. Mathematical Sciences, 2020, 14 (1): 75- 85
doi: 10.1007/s40096-019-00317-5
|
20 |
JAGTAP A D, KAWAGUCHI K, EM KARNIADAKIS G Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2020, 476 (2239): 20200334
doi: 10.1098/rspa.2020.0334
|
21 |
VON RUEDEN L, MAYER S, BECKH K, et al Informed machine learning: a taxonomy and survey of integrating prior knowledge into learning systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35 (1): 614- 633
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|