Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (2): 426-436    DOI: 10.3785/j.issn.1008-973X.2023.02.021
电子与通信工程     
基于安全状态更新的信息年龄-能量权衡
刘蕾1(),李保罡1,2,*(),杨志1
1. 华北电力大学 电子与通信工程系,河北 保定 071003
2. 华北电力大学 河北省电力物联网技术重点实验室,河北 保定 071003
Age of information-energy tradeoff based on security status update
Lei LIU1(),Bao-gang LI1,2,*(),Zhi YANG1
1. Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China
2. Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China
 全文: PDF(1043 KB)   HTML
摘要:

考虑状态更新系统中传感器节点要尽可能及时地将随机生成的状态更新传送给基站,以信息年龄(AoI)作为时间新度量,同时引入平均保密年龄和保密年龄中断概率的性能指标,保证系统的通信安全性. 采用实用的截断自动重复请求(TARQ)方案,传感器节点持续传输不断更新当前状态,直到达到允许的最大传输次数或生成新的状态更新. 推导出平均AoI、平均峰值AoI的闭合形式表达式,以及平均能耗的表达式,通过优化物联网(IoT)设备的传输功率和平均传输功率约束下的最大允许传输次数来最小化平均AoI,实现系统的信息年龄-能量权衡. 仿真结果表明,在相同的平均传输功率约束下,采用的TARQ方案比允许无限次重传的经典自动重复请求(ARQ)方案的平均AoI更低,性能更好.

关键词: 信息年龄(AoI)信息年龄-能量权衡物理层安全状态更新保密中断概率    
Abstract:

Considering that the sensor node in the status update system should transmit the status update randomly to the base station as timely as possible, Age of information (AoI) was introduced as a new time measurement, and the performance indexes of average confidentiality age and secrecy age outage probability were introduced to ensure the communication security of the system. A practical truncation of automatic repeated requests (TARQ) scheme was adopted, in which the sensor node continuously transmitted and updated the current state until the maximum number of transfers allowed was reached or a new state update was generated. The average AoI, the closed form expression of the average peak AoI, and the expression of average energy consumption were derived, and then the average AoI was minimized by optimizing the transmission power of Internet of Things (IoT) devices and the maximum allowed transmission times under the constraint of the average transmission power, to realize the information age-energy tradeoff of the system. Simulation results show that the TARQ scheme has lower average AoI and better performance than the classical automatic repeat request (ARQ) scheme which allows infinite retransmission under the same average transmission power constraint.

Key words: age of information (AoI)    age of information-energy tradeoff    physical layer security    status update    secrecy outage probability
收稿日期: 2022-05-20 出版日期: 2023-02-28
CLC:  TN 92  
基金资助: 国家自然科学基金资助项目 (61971190);河北省自然科学基金资助项目(F2022502020)
通讯作者: 李保罡     E-mail: llan0825@163.com;baogangli@ncepu.edu.cn
作者简介: 刘蕾(1998—),女,硕士生,从事无线通信中信息年龄研究. orcid.org/0000-0003-2543-908X. E-mail: llan0825@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘蕾
李保罡
杨志

引用本文:

刘蕾,李保罡,杨志. 基于安全状态更新的信息年龄-能量权衡[J]. 浙江大学学报(工学版), 2023, 57(2): 426-436.

Lei LIU,Bao-gang LI,Zhi YANG. Age of information-energy tradeoff based on security status update. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 426-436.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.021        https://www.zjujournals.com/eng/CN/Y2023/V57/I2/426

图 1  单天线传感器节点向基站传输状态更新信息的系统模型图
图 2  瞬时AoI演化图
参数 数值
衰落模型 瑞利衰落
频段/MHz 940
系统带宽/kHz 200
距离/m 200
路径损耗指数 2
信息率/kps 100
生成速率/(状态更新/时隙) 0.05,0.20,0.40
表 1  TARQ方案仿真参数设置
图 3  不同最大允许传输次数下TARQ方案的平均AoI随传输功率的变化
图 4  不同最大允许传输次数下TARQ方案的平均峰值AoI随传输功率的变化
图 5  不同传输功率下TARQ方案的平均发射功耗随最大允许传输次数的变化
图 6  不同平均传输功率约束和不同发射概率下的最佳允许传输次数
图 7  不同传输速率下,最佳平均AoI随平均发射功率约束的变化
图 8  状态更新概率对性能的影响
1 SICARI A, RIZZARDI A, GRIECO L A, et al Security, privacy and trust in internet of things: the road ahead[J]. Computer Networks, 2015, (76): 146- 164
2 KOSTA, PAPPAS N, ANGELAKIS V. Age of information: a new concept, metric, and tool. [EB/OL]. . [2022-04-23]. http://dx.doi.org/10.1561/1300000060.
3 CHANG Y H, LIN H, JI Y S Information cofreshness-aware grant assignment and transmission scheduling for Internet of things[J]. IEEE Internet of Things Journal, 2021, 19 (8): 14435- 14446
4 WANG Y L, CHEN W. Joint freshness and channel aware scheduling for multi-user wireless communications [C]// 2021 EEE International Conference on Communications. Nanjing: IEEE, 2021: 1-6.
5 ARAFA A, YANG J, ULUKUS S, et al Timely status updating over erasure channels using an energy harvesting sensor: single and multiple sources[J]. IEEE Transactions on Green Communications and Networking, 2022, 1 (6): 6- 19
6 BEVTUR H B, BAGHAEE S, UYSAL E. Towards AoI-aware smart IoT systems [C]// 2020 International Conference on Computing, Networking and Communications. Tokyo: IEEE, 2020: 353-357.
7 XIE M, GONG J, MA X. Age-energy tradeoff of short packet based transmissions in multicast networks with ARQ [C]// 2020 IEEE 91st Vehicular Technology Conference. Michigan: IEEE, 2020: 1-5.
8 SHI Y F, JING L T, JIA X D, et al Improvement on age of information for information update systems with HARQ chase combining and sensor harvesting-transmitting diversities[J]. IEEE Access, 2021, (9): 78035- 78049
9 ARAFA A, BANAWAN K, SEDDIK K G, et al. On timely channel coding with hybrid ARQ [C]// 2019 IEEE Global Communications Conference. Waikoloa Village: IEEE, 2019: 1-6.
10 JAISWAL A, CHATTOPADHYAY A. Minimization of age-of-information in remote sensing with energy harvesting [C]// 2021 IEEE International Symposium on Information Theory. Melbourne: IEEE, 2021: 3249-3254.
11 HE Q, DAN G, FODOR V. On Emptying a wireless network with minimum-energy under age constraints [C]// IEEE Conference on Computer Communications Workshops. Shanghai: IEEE, 2019: 668-673.
12 YI H T, YU P H. Online energy-efficient scheduling for timely information downloads in mobile networks [C]// 2019 IEEE International Symposium on Information Theory. Nanjing: IEEE, 2019: 1022-1026.
13 VALEHI A, RAZI A Maximizing energy efficiency of cognitive wireless sensor networks with constrained age of information[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 4 (8): 643- 654
14 GU Y, CHEN H, ZHOU Y, et al Timely status update in Internet of Things monitoring systems: an age-energy tradeoff[J]. IEEE Internet of Things Journal, 2019, 3 (6): 5324- 5335
15 YU C, WANG X J, YANG H H, et al. AoI and energy consumption oriented dynamic status updating in caching enabled Iot networks [C] // IEEE Conference on Computer Communications Workshops. Chengdu: IEEE. 2020: 710–715.
16 XIE M, GONG J, MA X. M. Is the packetized transmission efficient? an age-energy perspective [C]// IEEE Conference on Computer Communications Workshops. Chengdu: IEEE, 2020: 329–333.
17 ABBAS Q, ZEB S, HASSAN, et al. Joint optimization of age of information and energy efficiency in Iot networks [C]// 2020 IEEE 91st Vehicular Technology Conference. Antwerp: IEEE, 2020: 1–5.
18 GRYBOSI J F, REBELATTO J L, MORITZ G L, et al Age-energy tradeoff of truncated ARQ retransmission with receiver diversity[J]. IEEE Wireless Communications Letters, 2020, 11 (9): 1961- 1964
19 MUKHERJEE A Physical-layer security in the internet of things: sensing and communication confidentiality under resource constraints[J]. Proceedings of the IEEE, 2015, 10 (103): 1747- 1761
20 WYNER A D The wire-tap channel[J]. Bell System Technical Journal, 1975, 8 (54): 1355- 1387
21 AZARHAVA H, MUSEVI J Energy efficient resource allocation in wireless energy harvesting sensor networks[J]. IEEE Wireless Communications Letters, 2020, 7 (9): 1000- 1003
22 QIAN H Z, YUAN T J. Efficiency optimization control method of wireless power transmission based on double pick-up structure [C]// 2021 13th International Conference on Measuring Technology and Mechatronics. Beihai: IEEE, 2021: 178-182.
[1] 陈扬钊,袁伟娜. 深度学习辅助上行免调度NOMA多用户检测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 816-822.
[2] 孙晨,吴哲奕,袁建涛. 电力物联网中节能的免许可D2D接入算法设计[J]. 浙江大学学报(工学版), 2020, 54(10): 1867-1873.
[3] 汪周飞,袁伟娜. 基于深度学习的多载波系统信道估计与检测[J]. 浙江大学学报(工学版), 2020, 54(4): 732-738.
[4] 刘春生,单洪,王斌,黄郡. 基于Bregman散度的无线传感器网络定位[J]. 浙江大学学报(工学版), 2019, 53(8): 1525-1535.
[5] 张雪芹,张立,顾春华. 社交网络中社会工程学威胁定量评估[J]. 浙江大学学报(工学版), 2019, 53(5): 837-842.
[6] 郑晓雁,陈惠芳,谢磊. 感知数据错误化攻击下分布式检测的性能分析[J]. 浙江大学学报(工学版), 2019, 53(3): 563-570.
[7] 司恩波, 王晶, 靳其兵, 周靖林. 工业无线网络链路选择与时隙分配的同步优化[J]. 浙江大学学报(工学版), 2016, 50(6): 1203-1213.
[8] 吴端坡, 金心宇, 蒋路茸, 欧阳博. 高速铁路网络环境下掉话率分析[J]. 浙江大学学报(工学版), 2015, 49(4): 705-710.
[9] 董利达,黄聪,管林波. 基于双树结构的无线HART调度策略[J]. J4, 2014, 48(3): 391-397.
[10] 李训文,金文光,邵琦青,高伟. 基于PLC网络的改进AODV备份路由协议[J]. J4, 2013, 47(7): 1218-1224.
[11] 宫本康, 张朝阳, 叶露. Overlapped OFDMA—新颖的多载波频谱共享传输机制[J]. J4, 2013, 47(5): 860-866.
[12] 何晓丰 ,马成炎 ,叶甜春,王良坤 ,莫太山. 数字控制增益可配置的射频宽带放大器[J]. J4, 2012, 46(11): 1985-1990.
[13] 楼文涛, 张朝阳, 陈少磊, 殷锐. 基于无速率编码的认知无线电系统能量分配算法[J]. J4, 2012, 46(10): 1816-1821.
[14] 刘俊飙 ,金心宇,董芳. 高铁列车通信中无线衰落分析[J]. J4, 2012, 46(9): 1580-1584.
[15] 容志能,金文光,骆一希. 人体运动传感数据的无线采集方案设计[J]. J4, 2012, 46(7): 1314-1319.