Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 1007-1013    DOI: 10.3785/j.issn.1008-973X.2020.05.019
能源与动力工程     
T型微通道内液滴形成过程及长度的实验研究
张井志1,2(),陈武铠1,周乃香3,雷丽1,梁福顺1
1. 山东大学 能源与动力工程学院,山东 济南 250061
2. 山东大学 动力工程及工程热物理博士后科研流动站,山东 济南 250061
3. 山东省城乡规划设计研究院,山东 济南 250013
Experiment study on formation and length of droplets in T-junction microchannels
Jing-zhi ZHANG1,2(),Wu-kai CHEN1,Nai-xiang ZHOU3,Li LEI1,Fu-shun LIANG1
1. School of Energy and Power Engineering, Shandong University, Jinan 250061, China
2. Power Engineering and Engineering Thermal Physics Postdoctoral Research Station, Shandong University, Jinan 250061, China
3. Shandong Urban and Rural Planning and Design Institute, Jinan 250013, China
 全文: PDF(1340 KB)   HTML
摘要:

利用高速摄像机研究截面为400×400 μm的正T型微通道内液-液两相流动特性,离散相(硅油)和连续相(质量分数为0.5%的十二烷基硫酸钠SDS蒸馏水)的体积流量范围分别为1~5、2~110 mL/h. 结果表明,两相流型主要为弹状流和滴状流,前者的形成机理为挤压机理,后者为剪切机理. 液滴的长度随离散相体积流量和离散相与连续相体积流量之比的增大而增大,随连续相的体积流量和毛细数的增大而降低. 液柱长度的变化规律与液滴长度相反. 液滴生成时间随离散相与连续相的体积流量的增大而逐渐降低,剪切机理生成液滴所需时间小于挤压机理. 依据实验结果,采用离散相与连续相体积流量比和连续相的毛细数,总结出无量纲液滴、液柱长度及液滴生成时间的预测关联式.

关键词: 微通道两相流液滴微尺度毛细数    
Abstract:

Flow characteristics of liquid-liquid two-phase flows in T-junction microchannels with 400×400 μm cross-section were experimentally studied using a high-speed camera. Silicon oil and distilled water with 0.5% sodium dodecyl sulfate (SDS) were used as dispersed phase and continuous phase, respectively. Volume flow rates of the disperse phase ranged from 1 to 5 mL/h, while those of the continuous phases ranged from 2 to 110 mL/h. Slug flow and droplet flow patterns were observed in the experimental work. Results show that the formation of dispersed slugs is controlled by the squeezing mechanism, while the shearing mechanism domains the liquid droplet formation process. The length of liquid droplet increases with the increase of volume flow rate of dispersed phase and the volume flow rate ratio of dispersed phase to continuous phase, and decreases with the increase of volume flow rate and capillary number of continuous phase. The change of lengths of liquid column is opposite to that of liquid droplet. The droplet generation time decreases with the increase of volume flow rates of dispersed phase and continuous phase, and the formation time for shearing mechanism is less than that of squeezing mechanism. Based on the experimental results, the volume flow rate ratio of dispersed phase to continuous phase and the capillary number of continuous phase are adopted to develop the predictive correlations of dimensionless liquid droplets, column length and droplet generation time.

Key words: microchannel    two-phase flow    droplet    microscale    capillary number
收稿日期: 2019-04-16 出版日期: 2020-05-05
CLC:  TQ 124  
基金资助: 中国博士后科学基金资助项目(2018M642655);山东省自然科学基金资助项目(ZR2018BEE026);山东大学基本科研业务经费资助项目(2017GN0026)
作者简介: 张井志(1989—),男,助理研究员,博士,从事微流控及多相流研究. orcid.org/0000-0001-5672-8349. E-mail: zhangjz@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张井志
陈武铠
周乃香
雷丽
梁福顺

引用本文:

张井志,陈武铠,周乃香,雷丽,梁福顺. T型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013.

Jing-zhi ZHANG,Wu-kai CHEN,Nai-xiang ZHOU,Li LEI,Fu-shun LIANG. Experiment study on formation and length of droplets in T-junction microchannels. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1007-1013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.019        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/1007

图 1  微液滴实验系统及测试段示意图
图 2  微液滴实验图片处理过程
图 3  不同工况下的T型微通道内液滴形成过程
图 4  T型微通道内液-液两相流流动型图
图 5  主要因素对无量纲液滴长度的影响
图 6  主要因素对无量纲液柱长度的影响
文献 通道结构 连续相 离散相 关联式 MAD/% MADmax/% MRD/%
Xu等[20] 侧T型W=0.2 mm 水+SDS 正辛烷 ${L_{\rm{d}}}/W = 0.75{q^{1/3}}{\rm{C}}{{\rm{a}}_{\rm{c}}}^{ - 0.2}$ 22.5 55.5 ?18.7
Yao等[19] 正T型W=0.6 mm ${L_{\rm{d} } }/W = 1.34 + 1.623\dfrac{ { {q^{\rm{d} }_V } } }{ { {q^{\rm{c} }_V} - {q^{\rm{leak}}_V} } }$
甘油+SDS 辛烷 Case I ${ { {q}^{\rm{leak}}_{V} } }/{ { {q}_{V} }_{ {\rm{c} } } }\;=0.069\;8{\rm{C} }{ {\rm{a} }^{-0.269} }{ {q}^{0.041\;4} }$ 16.0 42.8 14.6
辛烷+ SPAN80 甘油 Case II ${ { {q}^{\rm{leak}}_{V} } }/{ { {q}_{V} }_{ {\rm{c} } } }\;=0.028\;2{\rm{C} }{ {\rm{a} }^{-0.321} }{ {q}^{0.249} }$ 13.0 41.2 7.2
魏丽娟等[22] 侧T型W=0.4 mm 水+甘油+SDS 环己烷 ${L_{\rm{d}}}/W = 0.85{\left( {{H}/{W}} \right)^{0.08}} + 1.28q{\left( {{H}/{W}} \right)^{ - 0.54}}$ 13.8 29.2 ?13.8
本研究 正T型W=0.4 mm 水+SDS 硅油 ${L_{\rm{d}}}/W = 0.522\;5{q^{0.129}}{\rm{C}}{{\rm{a}}_{\rm{c}}}^{ - 0.227}$ 6.7 17.7 5.2
水+SDS 硅油 ${L_{\rm{c}}}/W = 2.28{q^{ - 0.63}}{\rm{C}}{{\rm{a}}_{\rm{c}}}^{0.01}$ 14.5 38.2 2.1
表 1  液滴、液柱长度预测公式
图 7  实验值与新关联式预测值的对比
图 8  连续相与离散相体积流量对液滴生成时间的影响规律
图 9  实验获得的无量纲时间与关联式预测值的对比
1 ZHANG J, LI W Thermal and flow characteristics of water-nitrogen taylor flow inside vertical circular tubes[J]. Journal of Heat Transfer, 2018, 140 (8): 082004
2 ZHANG J, LI W Investigation of hydrodynamic and heat transfer characteristics of gas-liquid Taylor flow in vertical capillaries[J]. International Communications in Heat and Mass Transfer, 2016, 74: 1- 10
doi: 10.1016/j.icheatmasstransfer.2016.03.003
3 靳遵龙, 郭月明, 王定标, 等 T型正弦微通道内气液两相流动的数值研究[J]. 低温与超导, 2016, 44 (2): 39- 42
JIN Zun-long, GUO Yue-ming, WANG Ding-biao, et al Numerical simulation of gas-liquid two-phase flow in sinusoidal T-junction microchannels[J]. Cryogenics and Superconductivity, 2016, 44 (2): 39- 42
4 CAI W, ZHANG J, ZHANG X, et al Enhancement of CO2 absorption under taylor flow in the presence of fine particles [J]. Chinese Journal of Chemical Engineering, 2013, 21 (2): 135- 143
doi: 10.1016/S1004-9541(13)60451-6
5 姜山, 朱春英, 张璠玢, 等 微通道内单乙醇胺水溶液吸收CO2/N2混合气的传质特性 [J]. 化工学报, 2017, 68 (2): 643- 652
JIANG Shan, ZHU Chun-ying, ZHANG Fan-fen, et al Mass transfer performance of CO2/N2 mixture absorption into monoethanolamine aqueous solution in microchannel [J]. CIESC Journal, 2017, 68 (2): 643- 652
6 YAO C, ZHAO Y, CHEN G Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications[J]. Chemical Engineering Science, 2018, 189: 340- 359
doi: 10.1016/j.ces.2018.06.007
7 ZHANG Q, LIU H, ZHAO S, et al Hydrodynamics and mass transfer characteristics of liquid-liquid slug flow in microchannels: the effects of temperature, fluid properties and channel size[J]. Chemical Engineering Journal, 2019, 358: 794- 805
doi: 10.1016/j.cej.2018.10.056
8 ZHAO S, WANG W, SHAO T, et al Mixing performance and drug nano-particle preparation inside slugs in a gas-liquid microchannel reactor[J]. Chemical Engineering Science, 2013, 100: 456- 463
doi: 10.1016/j.ces.2013.02.013
9 DAMIATI S, KOMPELLA U B, DAMIATI S A, et al Microfluidic devices for drug delivery systems and drug screening[J]. Genes, 2018, 9 (2): 103
doi: 10.3390/genes9020103
10 ZHOU C, ZHU P, TIAN Y, et al Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers[J]. Lab on a Chip, 2017, 17 (19): 3310- 3317
doi: 10.1039/C7LC00696A
11 张井志, 李蔚 毛细管内气液Taylor流动的气泡及阻力特性[J]. 化工学报, 2015, 66 (3): 942- 948
ZHANG Jing-zhi, LI Wei Bubble and frictional characteristics of gas-liquid Taylor flow in capillary tube[J]. CIESC Journal, 2015, 66 (3): 942- 948
doi: 10.11949/j.issn.0438-1157.20141622
12 张井志, 李蔚 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报:工学版, 2015, 49 (8): 1572- 1577
ZHANG Jing-zhi, LI Wei Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (8): 1572- 1577
13 FU T, MA Y, FUNFSCHILLING D, et al Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65 (12): 3739- 3748
doi: 10.1016/j.ces.2010.03.012
14 WU Z, CAO Z, SUNDEN B Flow patterns and slug scaling of liquid-liquid flow in square microchannels[J]. International Journal of Multiphase Flow, 2019, 112: 27- 39
doi: 10.1016/j.ijmultiphaseflow.2018.12.009
15 陈珉芮, 钱锦远, 李晓娟, 等 十字型微通道中非定常分散相速度下液滴生成的数值分析[J]. 高校化学工程学报, 2018, 32 (3): 522- 528
CHEN Min-rui, QIAN Jin-yuan, LI Xiao-juan, et al Numerical simulation of droplet generation in cross-junction microchannel under changing dispersion phase velocities[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32 (3): 522- 528
doi: 10.3969/j.issn.1003-9015.2018.03.005
16 周乃香, 张井志, 林金品, 等 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报: 工学版, 2016, 50 (10): 1859- 1864
ZHOU Nai-xiang, ZHANG Jing-zhi, LIN Jin-pin, et al Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (10): 1859- 1864
17 GARSTECKI P, FUERSTMAN M J, STONE H A, et al Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6 (3): 437- 446
doi: 10.1039/b510841a
18 DE MENECH M, GARSTECKI P, JOUSSE F, et al Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595: 141- 161
doi: 10.1017/S002211200700910X
19 YAO C, LIU Y, CHAO X, et al Formation of liquid-liquid slug flow in a microfluidic t-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2017, 64 (1): 346- 357
20 XU J H, LI S W, TAN J, et al Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5 (6): 711- 717
doi: 10.1007/s10404-008-0306-4
21 CHRISTOPHER G F, NOHARUDDIN N N, TAYLOR J A, et al Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2008, 78 (3): 036317
22 魏丽娟, 朱春英, 付涛涛, 等 T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64 (2): 517- 523
WEI Li-juan, ZHU Chun-ying, FU Tao-tao, et al Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64 (2): 517- 523
doi: 10.3969/j.issn.0438-1157.2013.02.015
[1] 胡定华,刘诗雨. Al2O3纳米流体液滴撞击壁面的动力学行为数值研究[J]. 浙江大学学报(工学版), 2021, 55(5): 991-998.
[2] 邱云龙,胡文杰,吴昌聚,陈伟芳. 嵌入式微通道传热特性及局部热点尺度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 665-674.
[3] 张玙,刘益才. 小型制冷系统两相流致噪声研究进展[J]. 浙江大学学报(工学版), 2021, 55(4): 775-792.
[4] 黄钰期,陈卓烈,胡军强,李梅,牛昊一. 活塞内冷油腔两相流振荡可视化模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 435-441.
[5] 张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.
[6] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[7] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[8] 孙潮,梅德清,徐行,李立昌,袁银男. 水平板上固着碳纳米管燃油液滴的蒸发特性[J]. 浙江大学学报(工学版), 2019, 53(2): 234-240.
[9] 李亦健, 吴舒琴, 金滔. 低温浆体电容式液位计的优化及实验[J]. 浙江大学学报(工学版), 2018, 52(5): 966-970.
[10] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[11] 代超, 纪献兵, 周冬冬, 王野, 徐进良. 液滴碰撞不同湿润性表面的行为特征[J]. 浙江大学学报(工学版), 2018, 52(1): 36-42.
[12] 赵庆娟, 徐杰, 单德彬, 郭斌. 基于阵列微通道的电磁成形数值模拟及实验研究[J]. 浙江大学学报(工学版), 2017, 51(1): 198-203.
[13] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[14] 沈腾, 王炅, 黄刘. 离心环境下毛细被动阀的理论与实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1578-1584.
[15] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.