Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
石墨蓄热式集热管内流动沸腾传热特性
王宇飞,张良,王涛,俞自涛,胡亚才
浙江大学 能源工程学院 热工与动力系统研究所, 浙江 杭州 310027
Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver
WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai
Institute of Thermal Science and Power Systems, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1630 KB)   HTML
摘要:

为了研究石墨蓄热对太阳能集热管内流动沸腾传热特性的影响,采用对比实验方法,通过改变热流密度设计4种不同的加热阶段,以石墨蓄热对集热管出口蒸汽温度、集热管均温性的改善为依据对石墨蓄热集热管性能进行评价,并重点分析石墨蓄热对集热管内流动沸腾不稳定性特征与管内换热系数的影响.实验结果表明,石墨蓄热导致辐照(热流密度)突降时集热管出口蒸汽温度降低时间延长了30.0%.与此同时,石墨蓄热对集热管轴向和径向温差均有明显的改善.在高热流密度条件下,集热管均温性的改善有效地抑制管内流动沸腾传热不稳定性,使得集热管的平均换热系数提高了7.23%.

Abstract:

A comparative experiment was conducted to investigate the effects of heat storage of graphite on flow boiling heat transfer characteristics in solar receiver. Improvement of thermal performance of receiver was verified by the outlet temperature and the isothermal performance of receiver by setting a four-stage heating process with different heat flux.The effects of thermal energy storage of graphite on flow instability and heat transfer were analyzed. Results showed that the thermal energy storage of graphite resulted in a time prolongation of outlet temperature decline by 30.0% when a sudden drop of solar radiation (or heat flux) happened. Heat storage of graphite improved the isothermality of receiver in both radius and axis direction. The isothermality improvement  effectively restrained the flow boiling instabilities in receiver for the case of higher heat flux condition.  A  heat transfer coefficient enhancement by was obtained 7.23%.

出版日期: 2016-11-01
:  TK 124  
基金资助:

国家自然科学青年基金资助项目(51406177),中国博士后科学基金资助项目(2014M551734,2015T80613).

通讯作者: 张良,男,博士后. ORCID: 0000-0002-9148-8210.     E-mail: jackway@zju.edu.cn.
作者简介: 王宇飞(1992-),男,硕士生,从事太阳能蓄热和流动沸腾强化传热等研究. ORCID:0000-0002-9449-8705. E-mail: wyf0351@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.11.007.

WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.11.007.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.11.007        http://www.zjujournals.com/eng/CN/Y2016/V50/I11/2087

[1] 王仲颖, 高虎. 中国可再生能源产业发展报告2009[M].北京:化学工业出版社,2010: 70-85.
[2] PRICE H, LPFERT E, KEARNEY D, et al. Advances in parabolic trough solar power technology [J]. Journal of Solar Energy Engineering, 2002, 124(2): 109-125.
[3] TIAN Y, ZHAO C Y. A review of solar collectors and thermal energy storage in solar thermal applications [J]. Applied Energy, 2013, 104: 538-553.
[4] 汉京晓, 杨勇平, 侯宏娟. 太阳能热发电的显热蓄热技术进展[J]. 可再生能源, 2014, 32(7): 901-905.
HAN Jingxiao, YANG Yongping, HOU Hongjuan. Review on sensible heat thermal energy storage in solar thermal generation [J]. Renewable Energy Resources, 2014, 32(7): 901-905.
[5] SRUM M, DORAO C A. Experimental study of the heat transfer coefficient deterioration during Density Wave Oscillations [J]. Chemical Engineering Science, 2015, 132: 178-185.
[6] KIM Y I, BAEK W P, CHANG S H. Critical heat flux under flow oscillation of water at lowpressure, lowflow conditions [J]. Nuclear engineering and design, 1999, 193(1): 131-143.
[7] 陈欢, 王红梅, 俞自涛, 等. 自然循环槽式太阳能中高温集热系统实验研究[J]. 浙江大学学报:工学版, 2012, 46(9): 1666-1670.
CHEN Huan, WANG Hongmei, YU Zitao, et.al. Experimental investigation of a natural circulation parabolic trough collector system for mediumhigh temperature steam generation [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(9): 1666-1670.
[8] ALMANZA R, LENTZ A, JIMENEZ G. Receiver behavior in direct steam generation with parabolic troughs [J]. Solar Energy, 1997, 61(4): 275-278.
[9] ODEH S D, BEHNIA M, MORRISON G L. Hydrodynamic analysis of direct steam generation solar collectors [J]. Journal of Solar Energy Engineering, 2000, 122(1): 1422.
[10] 张良, 王宇飞, 华蒙, 等. 一种显热蓄热型太阳能集热管及调控加热方法:中国,CN 104359241 A [P]. 2015-02-18.
ZHANG Liang, WANG Yufei, HUA Meng, et al. A kind of solar collector with sensible heat storage and regulation method. China, CN 104359241 A[P]. 2015. 02. 18.
[11] LIU H T, KAKA S, MAYINGER F. Characteristics of transition boiling and thermal oscillation in an upflow convective boiling system [J]. Experimental Thermal and Fluid Science, 1994, 8(3): 195-205.
[12] UMEKAWA H, OZAWA M, MIYAZAKI A, et al. Dryout in a boiling channel under oscillatory flow condition [J]. JSME International Journal Series B Fluids and Thermal Engineering, 1996, 39(2): 412-418.
[13] HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 145152.
[14] ZHANG L, WANG W, YU Z, et al. An experimental investigation of a natural circulation heat pipe system applied to a parabolic trough solar collector steam generation system [J]. Solar Energy, 2012, 86(3): 911919.
[15] HUA M, ZHANG L, FAN L, et al. Experimental investigation of effect of heat load on thermal performance of natural circulation steam generation system as applied to PTCbased solar system[J]. Energy Conversion and Management, 2015, 91: 101-109.
[16] DORAO C A. Effect of inlet pressure and temperature on density wave oscillations in a horizontal channel [J]. Chemical Engineering Science, 2015, 134: 767-773.
[17] YADIGAROGLU G, BERGLES A E. Fundamental and highermode density-wave oscillations in two-phase flow [J]. Journal of Heat Transfer, 1972, 94(2): 189-195.
[18] ZHANG T J, WEN J T, PELES Y, et al. Two-phase refrigerant flow instability analysis and active control in transient electronics cooling systems [J]. International Journal of Multiphase Flow, 2011, 37(1): 84-97.

[1] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[2] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[3] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[4] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[5] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[6] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[8] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[9] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[10] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[11] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.