Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
双粒度混合烧结矿颗粒填充床压降实验
田付有,黄连锋,范利武,俞自涛 ,胡亚才
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027
2. 浙江省制冷与低温技术重点实验室,浙江 杭州 310027
Experimental study on pressure drop of packed beds with binary sintered ore particle mixtures
TIAN Fu you,HUANG Lian feng,FAN Li wu,YU Zi tao,HU Ya cai
1. Institute of Thermal Science and Power Systems,Zhejiang University,Hangzhou 310027,China
2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province,Hangzhou 310027,China
 全文: PDF(1386 KB)   HTML
摘要:

为了揭示双粒度混合烧结矿颗粒填充床阻力特性规律,采用实验方法测量双粒度烧结矿颗粒填充床的压降,对表观流速在0.3~1.8 m/s范围内的填充床宏观特性参数、空隙流动状态和阻力因子进行研究,并与玻璃球颗粒进行比较. 结果表明:双粒度混合烧结矿填充床的渗透率K随着粒度增加最终相对单一粒度增大40%,Forchheimer系数F随粒度分布范围的增大而增加;空隙流动进入不稳定的过渡区和湍流区的速度比单一粒度有所降低|壁面效应修正黏性项系数Aw和Bw整体减小|提出包含粒度分布范围的混合粒度烧结矿填充床阻力预测公式,对修正黏性项系数Aw平均预测误差小于12.3%,对修正惯性项系数Bw平均预测误差小于3.4%.

Abstract:

Pressure drop of the packed beds with sintered ore particles (SOPs) was experimentally measured, with the superficial velocities at 0.3~1.8 m/s, so as to reveal the gas resistance characteristics for the packed beds with binary SOP mixtures. The issues including the macroscopic parameters of packed beds, flow regimes in the pores and friction factors were investigated, with glass beads as the reference material. Results indicate that the permeability K increases by up to 40% with the increase of the particle size in comparison to the mono-sized ones. The Forchheimer coefficient F increases with the enlargement of the particle size distribution for the packed beds with binary SOP mixtures. The critical velocities for the transition of the flow in the pores become smaller compared with the mono-sized particles. The coefficients Aw and Bw deviate downwards from the mono-sized values on the whole. Improved pressure drop correlations are proposed with particle size distribution width as a parameter. The average prediction errors are less than 12.3% and 3.4% for the modified viscous and inertia coefficients, respectively.

出版日期: 2016-11-01
:  TK 11  
基金资助:

浙江铂瑞能源环境工程有限公司科学技术资助项目(H20131352).

通讯作者: 俞自涛,男,教授. ORCID: 0000-0003-3641-710X.     E-mail: yuzitao@zju.edu.cn
作者简介: 田付有(1988-),男,博士生,从事余热利用技术等方向研究. ORCID: 0000-0001-9701-5919. E-mail: tianfuyou@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

田付有,黄连锋,范利武,俞自涛,胡亚才. 双粒度混合烧结矿颗粒填充床压降实验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.11.006.

TIAN Fu you,HUANG Lian feng,FAN Li wu,YU Zi tao,HU Ya cai. Experimental study on pressure drop of packed beds with binary sintered ore particle mixtures. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.11.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.11.006        http://www.zjujournals.com/eng/CN/Y2016/V50/I11/2077

[1] 董辉,李磊,刘文军,等. 烧结矿余热竖罐式回收利用工艺流程[J]. 中国冶金,2012,22(1):6-11.
DONG Hui,LI Lei,LIU Wenjun,et al. Process of waste heat recovery and utilization for sinter in vertical tank [J]. China Metallurgy,2012,22(1):611.
[2] 赵 斌,张玉柱,苍大强,等. 立式烧结冷却机与余热发电工艺研发[J]. 烧结球团,2009,34(6):510.
ZHAO Bin,ZHANG Yuzhu,CANG Daqiang,et al. Development of a vertical sinter cooler and waste heat generating process [J]. Sintering and Pelletizing,2009,34(6):510.
[3] 黄连锋,田付有,厉青,等. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报:工学版,2015,49(5):916923.
HUANG Lianfeng,TIAN Fuyou,LI Qing,et al. Analysis of gassolid heat transfer performance in vertically – arranged sinter coolers [J]. Journal of Zhejiang University :Engineering Science,2015,49(5):916-923.
[4] 冯军胜,董辉,李明明,等. 烧结余热回收竖罐内固定床层的阻力特性[J]. 中南大学学报:自然科学版,2014,45(8):2566-2571.
FENG Junsheng, DONG Hui, LI Mingming, et al. Resistance characteristics of fixed bed layer in vertical tank for recovering sinter waste heat\[J\]. Journal of Central South University:Science and Technology,2014,45(8):2566-2571.
[5] TIAN F Y,HUANG L F,FAN L W,et al. Pressure drop in a packed bed with sintered ore particles as applied to sinter coolers with a novel vertically arranged design for waste heat recovery [J]. Journal of Zhejiang University  SCIENCE A,2016,17(2):89-100.
[6] ALLEN K.G.,BACKSTRM T W,KRGER D G. Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness [J]. Powder Technology,2013,246:590-600.
[7] CHENG N S. Wall effect on pressure drop in packed beds [J]. Powder Technology,2011,210:261-266.
[8] MONTILLET A. Flow through a finite packed bed of spheres: A note on the limit of applicability of the Forchheimer-type equation [J]. Journal of Fluids Engineering,Transactions of ASME,2004,126:139-143.
[9] HLUSHKOU D,TALLAREK U. Transition from creeping via viscous-inertial to turbulent flow in fixed beds [J]. Journal of Chromatography A,2006,1126,7085.
[10] FAND R M,KIM B Y K,LAM A C C,et al. Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres [J]. Journal of Fluids Engineering,Transactions of ASME,1987,109:268273.
[11] FAND R M,THINAKARAN R. The influence of the wall on flow through pipes packed with spheres [J]. Journal of Fluids Engineering,Transactions of ASME,1990,112:8488.
[12] LI L X,MA W M. Experimental characterization of the effective particle diameter of a particulate bed packed with multidiameter spheres [J]. Nuclear Engineering and Design,2011,241(5):1736-1745.
[13] ENDO Y,CHEN D R,PUI D Y H. Air and water permeation resistance across dust cakes on filters-effects of particle polydispersity and shape factor [J]. Powder Technology,2001,118:24-31.
[14] KEYSER M J,CONRADIE M,COERTZEN M,et al. Effect of coal particle size distribution on packed bed pressure drop and gas flow distribution [J]. Fuel,2006,85(10/11):14391445.
[15] BRUCH A,FOURMIGU J F,COUTURIER R. Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for CSP power plant [J]. Solar Energy,2014,105:116125.
[16] KOEKEMOER A,LUCKOS A. Effect of material type and particle size distribution on pressure drop in packed beds of large particles: Extending the Ergun equation [J]. Fuel,2015,158:232238.
[17] PAN L W,DAI F Q,TIAN Y Q,et al. Experimental investigation of the sphericity of irregularly shaped oil shale particle groups [J]. Advanced Powder Technology,2015,26(1):66-72.
[18] OZAHI E,GUNDOGDU M Y,CARPINLIOGLU M . A modification on Erguns correlation for use in cylindrical packed beds with nonspherical particles [J]. Advanced Powder Technology,2008,19(4):369-381.
[19] LUCKOS A,BUNT J R. Pressuredrop predictions in a fixedbed coal gasifier [J]. Fuel,2011,90(3):917-921.
[20] GB/T 245862009. 铁矿石表观密度、真密度和孔隙率的测定[S]. 北京:中国标准出版社,2009.
GB/T 245862009. Iron ores—Determination of apparent density, true density and porosity [S]. Beijing:Standards Press of China,2009.
[21] LEITZELEMENT M,SENG LO C,DODDS J. Porosity and permeability of ternary mixtures of particles [J]. Powder Technology,1985,41:159-164.
[22] DUKHAN N,BACL ,ZDEMIR M. Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relations [J]. Experimental Thermal and Fluid Science,2014,57:425-433.
[23] ERGUN S. Fluid flow through packed columns [J]. Chemical Engineering Progress,1952,48(2):89-94.
[24] METHA D,HAWLEY M C. Wall effect in packed columns [J]. Industrial & Engineering Chemistry Process Design and Development,1969,8(2):280-282.
[25] SEGUIN D,MONTILLET A,COMITI J,et al. Experimental characterization of flow regimes in various porous mediaII: Transition to turbulent regime [J]. Chemical Engineering Science,1998,53(22):3897-3909.

[1] 徐焕祥,俞小莉,王雷,樊之鹏,窦文博,魏巍,李道飞. 压缩空气-燃油混合动力排气能量回收利用[J]. 浙江大学学报(工学版), 2016, 50(7): 1353-1359.
[2] 夏宇,仇性启,惠媛媛. 伴有参与性介质的开口系统传热研究[J]. 浙江大学学报(工学版), 2016, 50(7): 1367-1372.
[3] 韩中合,白亚开,王继选. 冷冻氨脱碳机组流程仿真及其耦合方式优化[J]. 浙江大学学报(工学版), 2016, 50(3): 499-507.
[4] 徐焕祥, 李道飞, 王雷, 叶锦, 樊之鹏, 俞小莉. 回收余热能的气动/内燃复合循环效率[J]. 浙江大学学报(工学版), 2014, 48(4): 649-652.
[5] 孔祥强,林琳,李瑛, 杨前明. R410A直膨式太阳能热泵热水器性能研究[J]. J4, 2013, 47(9): 1666-1671.
[6] 孙大明, 王凯, 楼平, 赵益涛, 张学军, 邱利民. 斯特林型热声发动机驱动直线发电机的工作特性[J]. J4, 2013, 47(8): 1457-1462.
[7] 徐焕祥, 李道飞, 王雷, 叶锦, 樊之鹏, 俞小莉. 回收排气余热能的气动-内燃复合循环理论研究[J]. J4, 2013, 47(6): 1051-1056.
[8] 曲瑞陽,吴学成,高翔,吴迎春,陈玲红,G. Grehan,岑可法. 数字显微全息中颗粒重建数值模拟[J]. J4, 2012, 46(9): 1647-1653.