Please wait a minute...
浙江大学学报(工学版)
机械工程     
基于组合挖掘的反铲液压挖掘机工作装置优化设计
陈进,庆飞,庞晓平
重庆大学 机械传动国家重点实验室,重庆 400030
Optimal design of backhoe hydraulic excavator working device based on synthesis digging
CHEN Jin, QING Fei, PANG Xiao-ping
State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing 400030,China
 全文: PDF(935 KB)   HTML
摘要:

为了解决挖掘机在实际作业过程中挖掘力不足、燃油经济性差等常见问题,综合分析和比较国内外先进的挖掘机挖掘性能参数,提出基于组合挖掘的挖掘机工作装置优化设计新方法.挖掘机的组合挖掘方式包括基于作业路径上的多段单缸挖掘轨迹的组合和基于可行区域内离散点的双缸同时主动复合作用两种.建立优化数学模型,通过遗传算法求解多目标函数.优化结果显示:挖掘机的挖掘性能在习惯作业路径上最大挖掘力提高了10%,双缸复合挖掘时工作油缸的充分发挥比例提高了13%以及最大复合挖掘力提高了8%,证明了新优化方法在提高挖掘性能上的可行性.

Abstract:

Aiming  the insufficient digging force and fuel economy of hydraulic excavator under common working condition, a new optimal design method for working device of hydraulic excavator based on synthesis digging is proposed after a comprehensive comparison of digging performance parameters between domestic and international advanced excavators. The specific methods of synthesis digging include the combination of single-cylinder digging trajectories as a customary digging path and complex digging of two active cylinders on a point in feasible area. Fully considering the characteristics of consecutive digging process of hydraulic excavator, the best digging performance on its customary digging path can be obtained with optimal design based on digging path. The maximum complex digging force and the proportion of two active cylinders when giving full play can be improved with optimal design based on complex digging in the feasible area to enhance the digging efficiency. The optimization mathematical model is built and the multi-objective optimization is solved by using of genetic algorithm. The optimization result shows that a certain model of a excavators maximum digging force on the customary digging paths is improved by 10%, the proportion of two active cylinders when giving full play in complex digging process is improved by 13% and the maximum complex digging force is improved by 8% after the optimization on the working device of the excavator with weak digging force, which proves that the new optimal design method based on synthesis digging is feasible to improve the digging performance of hydraulic excavator.

出版日期: 2014-09-01
:  TH 122  
基金资助:

国家自然科学基金资助项目(51475056)

作者简介: 陈进,男,教授,博导.从事工程机械机构优化设计研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈进,庆飞,庞晓平. 基于组合挖掘的反铲液压挖掘机工作装置优化设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.09.016.

CHEN Jin, QING Fei, PANG Xiao-ping. Optimal design of backhoe hydraulic excavator working device based on synthesis digging. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.09.016.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.09.016        http://www.zjujournals.com/eng/CN/Y2014/V48/I9/1654

[1] 林慕义.单斗液压挖掘机构造与设计[M].北京:冶金工业出版社,2011:35.
[2]陈进,李秋波,张石强,等.正铲液压挖掘机挖掘性能图谱叠加分析法[J].中国工程机械学报,2011,9(1):32-37.
CHEN Jin, LI Qiu-bo, ZHANG Shi-qiang, et al. Atlas overlay analysis on digging performance for hydraulic face-shovels [J]. Chinese Journal of Construction Machinery, 2011,9(1):32-37.
[3]荣洪均.液压挖掘机反铲工作装置整机理论复合挖掘力的计算模型及其应用研究[D].重庆:重庆大学,2007.
RONG Hong-jun. Research and application for calculating model of theoretical digging force under combined work condition for hydraulic excavator with backhoe attachment [D].Chongqing: Chongqing University, 2007.
[4]KIM Y M, KANG H, HA J H, et al. A study on the virtual digging simulation of a hydraulic excavator [C]∥Proceedings of the 28th International Symposium on Automation and Robotics in Construction. Korea: ISARC ,2011:95-100.
[5] FRIMPONG S, LI Y. Virtual prototype simulation of hydraulic shovel kinematics for spatial characterization in surface mining operations [J]. International Journal of Surface Mining, Reclamation and Environment, 2005, 19(4): 238-250.
[6] 陈国俊.液压挖掘机[M].武汉:华中科技大学出版社,2011:18-21.
[7] SUI Tian-zhong, WANG Lei, TAN Zhen, et al. Structural parameters optimization of excavator working device based on mining process [J]. Advanced Materials Research, 2012,421:759-763.
[8] MRAD F, ABDUL-MALAK M A, SADEK S, et al. Automated excavation in construction using robotics trajectory and envelop generation [J].Engineering Construction and Architectural Management, 2002,9(4):325-335.
[9] 朱红妹.液压挖掘机挖掘性能分析与挖掘力分析计算[J].化工装备技术,2007,28(4):72-76.
ZHU Hong-mei. Digging performance analysis and digging force calculation for hydraulic excavator [J]. Chemical Equipment Technology, 2007,28(4):72-76.
[10] CHEN Jin, LI Gang. Optimization design of backhoe hydraulic excavator working device based on feasible digging area [C]∥Proceedings of the 2011 International Conference on Advances in Construction Machinery and Vehicle Engineering. SHANGHAI:ACMVE, 2011:130-133.
[11] WARD P, WAKELING A, WEEKS R, et al. Design of an excavator arm using optimization techniques [C]∥SAE Technical Paper Series.[S.l]:[s.n.],1987: 64-67.
[12] JENKINS W M. Towards structure optimization via the genetic algorithm[J]. Computer & Structure, 1991,40(5):1321-1327.
[13] 张艳.Visual Basic程序设计教程[M].徐州:中国矿业大学出版社,2001:25-50.

[1] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[2] 冀瑜,邱清盈,冯培恩,黄浩. 国际专利分类表中设计知识的提取和利用[J]. 浙江大学学报(工学版), 2016, 50(3): 412-418.
[3] 吕茂印, 徐月同, 叶国云, 姚鑫骅. 基于量子行为粒子群的非对称转向机构优化[J]. 浙江大学学报(工学版), 2016, 50(2): 218-223.
[4] 陈实, 杨智渊, 孙凌云, 楼赟. 草图设计知识分析方法——结合语音能量和创意拐点[J]. 浙江大学学报(工学版), 2015, 49(11): 2073-2082.
[5] 吴晨睿, 张树有, 刘晓健. 基于群聚参数网络分析的产品方案设计评价[J]. 浙江大学学报(工学版), 2015, 49(8): 1495-1502.
[6] 盖宇春, 朱伟东, 柯映林. 三坐标定位器部件刚度配置方法[J]. 浙江大学学报(工学版), 2014, 48(8): 1434-1441.
[7] 刘征, 顾新建, 潘凯, 杨青海. 基于TRIZ的产品生态设计方法研究——融合规则和案例推理[J]. J4, 2014, 48(3): 436-444.
[8] 杨巍,张秀峰,杨灿军,吴海杰. 基于人机5杆模型的下肢外骨骼系统设计[J]. J4, 2014, 48(3): 430-435.
[9] 程吉祥,顾新建,代风,刘征. 基于BioTRIZ的产品创新设计过[J]. J4, 2014, 48(1): 35-41.
[10] 盖宇春, 朱伟东, 柯映林. 大型飞机总装配中支撑点设计分析技术[J]. J4, 2013, 47(12): 2176-2183.
[11] 林晓华, 冯毅雄, 谭建荣. 基于免疫优化的产品系统可靠性参数区间预测方法[J]. J4, 2013, 47(6): 1013-1021.
[12] 应征, 王青, 李江雄, 柯映林,孙文博,韩永伟. 飞机数字化装配系统运动数据集成及监控技术[J]. J4, 2013, 47(5): 761-767.
[13] 应征, 章明, 王青, 柯映林. 飞机大部件调姿机构磨损预测模型的构建与仿真[J]. J4, 2013, 47(2): 209-215.
[14] 刘曦泽, 祁国宁, 傅建中, 樊蓓蓓, 许静. 集成形态学矩阵与冲突解决原理的设计过程模型[J]. J4, 2012, 46(12): 2243-2251.
[15] 黄雪梅, 张磊安, 魏修亭. 兆瓦级风机叶片静力加载过程D-MFAC控制[J]. J4, 2012, 46(12): 2280-2284.