Please wait a minute...
J4  2013, Vol. 47 Issue (12): 2176-2183    DOI: 10.3785/j.issn.1008-973X.2013.12.016
航空、航天     
大型飞机总装配中支撑点设计分析技术
盖宇春, 朱伟东, 柯映林
浙江大学 机械工程学系,浙江 杭州 310027
Design and analysis of fuselage supporting position for aircraft final assembly
GAI Yu-chun, ZHU Wei-dong, KE Ying-lin
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

当采用多个数控定位器对飞机机身进行支撑和定位时,由于重力载荷等因素的影响,机身会产生变形,而机身的变形可能导致装配过程中对机身制造和装配准确度的误判.为了保障飞机的整机装配质量,需要给出合理的机身支撑点数量和位置.根据某大型飞机的全机对接装配问题,建立机身的有限元模型,研究了不同支撑条件下飞机的变形性态,分析了定位器的数量、布局以及工艺接头的安装位置等因素对机身变形的影响,结果表明:当机身姿态角度参数由0°变化到10°时,机身测量点平均误差值由0.641 0 mm变为0.910 0 mm,而测量点最大误差值变化并不明显;当工艺接头安装角度由 0°变化到15°时,机身测量点平均误差值由0.910 0 mm变为1.216 2 mm,测量点最大误差值由2.803 4 mm变为3.122 9 mm;机身分别采用三点支撑(1、2号支撑框位),四点支撑(1、3号支撑框位)和六点支撑时,测量点平均位置误差分别为1.567 6、0.690 0、0.458 1 mm,测量点最大空间位置误差分别为2.738 8、1.228 1、0.874 9 mm,根据计算结果和机身装配工艺要求,最终确定机身采用六点支撑.

Abstract:

The number and layout of positioners should be designed reasonably to avoid misjudgment of fuselage manufacturing and assembly accuracy and guarantee the fuselage assembly quality. Based on the final assembly system of one certain large aircraft, a finite element model of the fuselage was established. Under different supporting conditions, the factors was influencing the fuselage deformation were identified and analyzed, such as the number and layout of positioners, and the mounting location of joint. The results showed that with the posture angle parameter changed from 0°to 10°, the average position error of measuring points changed from 0.641 to 0.910 mm, whereas the maximum position error of measuring points did not significantly change. With the installation angle of joint changed from 0°to 15°, the average position error of measuring points changed from 0.910 to 1.216 mm, and the maximum position error of measuring points changed from 2.803 to 3.129 mm. When the fuselage was supported by 3 positioners, 4 positioners and 6 positioners, the average position error of measuring points was 1.567,0.690 and 0.458 mm respectively, and the maximum position error of measuring points was 2.738,1.228 and 0.874 mm respectively. To fulfill the requirement of fuselage assembly technics, the fuselage should be supported by 6 positioners according to the fuselage deformation conditions.

出版日期: 2013-12-01
:  V 264.2  
基金资助:

国家自然科学基金资助项目(50905161,51205352);中央高校基本科研业务费专项资金资助项目(2012FZA4004).

通讯作者: 朱伟东,男,讲师.     E-mail: wdzhu@zju.edu.cn
作者简介: 盖宇春(1981—),男,博士生.从事先进制造技术与装备、飞机数字化装配的研究.E-mail: gyccc@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

盖宇春, 朱伟东, 柯映林. 大型飞机总装配中支撑点设计分析技术[J]. J4, 2013, 47(12): 2176-2183.

GAI Yu-chun, ZHU Wei-dong, KE Ying-lin. Design and analysis of fuselage supporting position for aircraft final assembly. J4, 2013, 47(12): 2176-2183.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.12.016        http://www.zjujournals.com/eng/CN/Y2013/V47/I12/2176

[1] 王云渤,张关康,冯宗律,等. 飞机装配工艺学(修订本)[M].北京: 国防工业出版社, 1990: 1-3.

[2] 范玉清,梅中义,陶剑. 大型飞机数字化制造工程[M]. 北京: 航空工业出版社,2011: 804-805.

[3] 范玉青.飞机数字化装配技术综述[J].航空制造技术,2006(10): 42-48.

FAN Yu-qing. Digital assembly for aircraft[J].Aeronautical Manufacturing Technology, 2006(10): 42-48.

[4] 邹冀华,刘志存,范玉青.大型飞机部件数字化对接装配技术研究[J].计算机集成制造系统,2007,13(7): 1367-1373.

ZOU Ji-hua, LIU Zhi-cun, FAN Yu-qing. Large-size airplane parts digital assembly technology[J].Computer Intergrated Manufacturing Systems, 2007 13(7): 1367-1373.

[5] 郭志敏,蒋君侠,柯映林.基于POGO柱三点支撑的飞机大部件调姿方法[J].航空学报,2009,30(7): 1319-1324.

GUO Zhi-min, JIANG Jun-xia, KE Ying-lin. Posture Alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009,30(7): 1319-1324.

[6] WILLAMS Gary, CHALUPA Edward, RAHHAL Steven, Automated positioning and alignment systems[R]. Plano,Tex, USA: Advanced Integration Technology, inc,2000.

[7] BI Z M, ZHANG W J. Flexible fixture design and automation: Review, issues and future directions[J].International Journal of Production Research, 2001, 39(13): 2867-2894.

[8] 张卫红,罗小桃,王振培,等.飞机装配工装结构分析与优化技术[J].航空制造技术, 2009(25): 40-43.

ZHANG Wei-hong, LUO Xiao-tao, WANG Zhen-pei, et al. Structural analysis and optimization Technique of Aircraft Assembly Fixture[J]. Aeronautical Manufacturing Technology, 2009(25): 40-43.

[9] 王亮,李东升, 飞机数字化装配柔性工装技术体系研究[J]. 航空制造技术, 2012(7): 34-39.

Wang Liang, LI Dong-sheng. Flexible tooling technology system for aircraft digital assembly[J]. Aeronautical Manufacturing Technology, 2012(7): 34-39.

[10] 许国康.大型飞机自动化装配技术[J]. 航空学报,2008,29(3): 734-740.

XU Guo-kang. Automatic assembly technology for large aircraft[J].Acta Aeronautica et Astronautica Sinica,2008 29(3): 734-740.

[11] 牛春匀.实用飞机结构工程设计[M]. 北京:航空工业出版社,2008: 477-478.

[12] MLLER Rainer, ESSER Martin, VETTE Matthias.Reconfigurable handling systems as an enabler for large components in mass customized production[J].Journal of Intelligent Manufacturing, 2013,24(5): 977-990.

[13] SHIRINZADEH B. Flexible fixturing for workpiece positioning and constraining[J]. Assembly Automation,2002,22(2): 112120.

[14] ABENHAIM G N, DESROCHERS A, TAHAN A. Nonrigid parts’ specification and inspection methods: notions, challenges, and recent advancements[J]. International Journal of Advanced Manufacturing Technology, 2012,68(5-8): 741-752.

[15] 熊有伦,丁汉,刘恩沧. 机器人学[M]. 北京:机械工业出版社,1993: 36-38.

[16] BONI L, FANTERIA D. Development of analytical methods for fuselage design: validation by means of finite element analyses[J]. Proceeding of Institution of Mechanical Engineers PartG: Journal of Aerospace Engineering, 2004, 218(5): 315-327.

[17] BONI L, FANTERIA D. Finite-element-based assessment of analytical methods for the design of fuselage frames[J]. Proceeding of Institution of Mechanical Engineers PartG: Journal of Aerospace Engineering, 2006,220(5): 387-398.

[18] 张士林 简明铝合金手册[M]. 上海:上海科学技术出版社 2001: 359-360.

[19] 庄茁,廖剑松,岑松,等. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社,2009: 63-68.

[1] 盖宇春, 蒋君侠, 曲巍葳, 柯映林, 黄浦缙. 面向飞机数字化装配的工艺接头承载分析[J]. J4, 2012, 46(10): 1737-1743.