Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 65-74    DOI: 10.3785/j.issn.1008-9209.2023.02.271
Plant Protection     
Preliminary evaluation of 110 peach/nectarine varieties on the gummosis disease resistance in Zhejiang Province
Yuqi WANG1(),Kexin GAN1,Xiongwei LI2,Jing JIN1,Lan ZHAO1,Zhengwen YE2,Deli SUN3,Li WANG4,Huijuan JIA1,Zhongshan GAO1()
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Forest & Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
3.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Huzhou Academy of Agricultural Sciences, Huzhou 313000, Zhejiang, China
Download: HTML   HTML (   PDF(2954KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study aimed to screen highly resistant varieties by investigating field gummosis disease levels in 110 local peach/nectarine varieties and selected varieties of 4- to 7-year-old trees. Combined with pedigree analysis, the source of the gummosis disease resistant germplasms was traced. The results showed that there were significant differences in the levels of gummosis disease among different peach/nectarine varieties, and the resistance gradually decreased with the increase of tree age. Among the 80 varieties that showed relatively stable levels of gummosis disease, nine varieties showed high resistance, most of which were peach varieties, such as ‘Qiubaitao’ and ‘Nanshantiantao’; 40 varieties showed resistance, such as ‘Hakuri’ and ‘Yuanmeng’; 16 varieties showed moderate resistance, such as ‘Hujingmilu’ and ‘Jinxiu’; nine varieties were susceptible to the disease, such as ‘Feicheng Baili’ and ‘Kurakato Wase’; and six varieties showed high susceptibility, such as ‘Bailutao’ and ‘Huyou 278’. The peach varieties were generally more resistant than the nectarine varieties. According to the genetic pedigrees, some resistant and highly resistant varieties, which originated from the traditional Chinese local variety ‘Chinese Cling’, had a genetic relationship. This research provides a reference for the selection of resistant varieties in production, as well as for further genetic and breeding applications.



Key wordspeach      nectarine      gummosis disease      variety resources      resistance      pedigree     
Received: 27 February 2023      Published: 01 March 2024
CLC:  S662.1  
Corresponding Authors: Zhongshan GAO     E-mail: 22016047@zju.edu.cn;gaozhongshan@zju.edu.cn
Cite this article:

Yuqi WANG,Kexin GAN,Xiongwei LI,Jing JIN,Lan ZHAO,Zhengwen YE,Deli SUN,Li WANG,Huijuan JIA,Zhongshan GAO. Preliminary evaluation of 110 peach/nectarine varieties on the gummosis disease resistance in Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 65-74.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.02.271     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/65


110个桃/油桃品种资源在浙江的流胶病抗性初步评价

为筛选流胶病抗性较强的桃/油桃栽培品种和种质资源,以110个桃/油桃地方品种和选育品种为试验材料,调查4—7年生树的流胶病田间发病情况,并结合系谱分析,追溯流胶病抗性种质来源。结果显示,不同桃/油桃品种间流胶病等级差异明显,抗性随树龄增大而逐渐下降,80个品种的流胶病等级表现较稳定,其中:9个品种表现为高抗,多为桃品种,代表品种有‘秋白桃’‘南山甜桃’等;40个品种表现为抗病,代表品种有‘白丽’‘圆梦’等;16个品种表现为中抗,代表品种有‘湖景蜜露’‘锦绣’等;9个品种表现为感病,代表品种有‘肥城白里’‘仓方早生’等;6个品种表现为高感,代表品种有‘白露桃’‘沪油278’等。桃品种的抗病性总体优于油桃品种。根据品种遗传系谱分析发现,部分抗病及高抗品种间存在不同程度的亲缘关系,‘上海水蜜’是部分抗病及高抗品种的原始亲本。本研究结果可为生产上选择合适的抗病品种和后续的抗病遗传育种提供参考。


关键词: 桃,  油桃,  流胶病,  品种资源,  抗性,  系谱 

品种

Variety

不同树龄流胶病等级

Gummosis disease level of different tree ages

抗性

Resistance

4 a5 a6 a7 a平均 Average
‘秋白桃’* ‘Qiubaitao’*0000.00HR
‘新玉’* ‘Xinyu’*00010.25HR
‘新红’* ‘Xinhong’*00010.25HR
‘南山甜桃’* ‘Nanshantiantao’*00010.25HR
‘浅间白桃’* ‘Asama Hakuto’*00010.25HR
‘灵参2号’* ‘Lingshen 2’*00010.25HR
‘大久保’ ‘Okubo’00010.25HR
‘霞脆’* ‘Xiacui’*00030.75
‘秋玉露’* ‘Qiuyulu’*01110.75HR
‘丽油5号’*‘Liyou 5’*01110.75HR
‘沙红桃’ ‘Shahongtao’11111.00R
‘中油桃11号’‘Zhongyoutao 11’11111.00R
‘布目早生’* ‘Nunome Wase’*11111.00R
‘蟠桃王’ ‘Pantaowang’00131.00R
‘秦王’ ‘Qinwang’00131.00R
‘紫血桃’* ‘Zixuetao’*11111.00R
‘新疆黄肉桃’ ‘Xinjiang Huangroutao’111.00
‘东峰水蜜’ ‘Dongfengshuimi’111.00R
‘中蟠桃10号’ ‘Zhongpantao 10’111.00R
‘太原水蜜’ ‘Taiyuan Shuimi’111.00R
‘早露蟠桃’ ‘Zaolupantao’111.00R
‘山西粉红’ ‘Shanxi Fenhong’111.00R
‘24-1’*111.00R
‘圆梦’* ‘Yuanmeng’*111.00R
‘北京晚蜜’ ‘Beijing Wanmi’111.00R
‘大观1号’* ‘Daguan 1’*111.00R
‘荧光油桃’*‘Yingguangyoutao’*111.00R
‘玫瑰露’* ‘Meiguilu’*111.00R
‘中桃21号’ ‘Zhongtao 21’111.00R
‘双佛’‘Sunfre’111.00R
‘沪油220’*‘Huyou 220’*111.00R
‘中油金红’‘Zhongyoujinhong’111.00R
‘沪油014’*‘Huyou 014’*111.00R
‘锦硕’* ‘Jinshuo’*111.00R
‘中蟠桃13号’ ‘Zhongpantao 13’111.00R
‘瑞光7号’‘Ruiguang 7’111.00R
‘中桃金阳’ ‘Zhongtaojinyang’111.00R
‘锦香’* ‘Jinxiang’*111.00R
‘丹霞玉露’* ‘Danxiayulu’*111.00R
‘玉露蟠桃’* ‘Yulupantao’*01131.25R
‘美帅’ ‘Meishuai’01131.25R
‘X1-7’*11131.50R
‘灵参1号’* ‘Lingshen 1’*11131.50R
‘青桃’* ‘Qingtao’*11131.50R
‘中油桃13号’‘Zhongyoutao 13’1131.67R
‘清水白桃’* ‘Shimizu Hakuto’*01331.75R
‘玉露’* ‘Yulu’*01331.75R
‘有明白桃’ ‘Yumyeong’01331.75R
‘白丽’* ‘Hakuri’*11332.00R
‘瑞光2号’‘Ruiguang 2’11332.00R
‘幻想’‘Fantasia’11332.00R
‘X1-4’*01352.25
‘早上海水蜜’* ‘Zaoshanghaishuimi’*01352.25
‘大红袍’* ‘Dahongpao’*01352.25
‘美硕’ ‘Meishuo’01352.25
‘郑黄3号’ ‘Zhenghuang 3’11352.50
‘秦光2号’‘Qinguang 2’11352.50
‘庆丰’ ‘Qingfeng’052.50
‘春美’ ‘Chunmei’01552.75
‘西圃’* ‘Xipu’*01372.75
‘川中岛白桃’ ‘Kawanakajima Hakuto’13353.00
‘春蕾’* ‘Chunlei’*11553.00
‘金霞油蟠’*‘Jinxiayoupan’*13353.00
‘垂枝桃’* ‘Chuizhitao’*11553.00
‘湖景蜜露’* ‘Hujingmilu’*3333.00MR
‘燕红’ ‘Yanhong’3333.00MR
‘东峰大红桃’ ‘Dongfengdahongtao’333.00MR
‘早红霞’‘Zaohongxia’333.00MR
‘秋分桃’ ‘Qiufentao’333.00MR
‘早美’ ‘Zaomei’333.00MR
‘杭蜜1号’* ‘Hangmi 1’*333.00MR
‘晚蜜’ ‘Wanmi’333.00MR
‘瑞光3号’‘Ruiguang 3’333.00MR
‘锦枫’* ‘Jinfeng’*333.00MR
‘早红2号’‘Early red 2’333.00MR
‘金秋’ ‘Jinqiu’073.50
‘中华寿桃’ ‘Zhonghuashoutao’33554.00MR
‘中农金辉’‘Zhongnongjinhui’33554.00MR
‘美锦’ ‘Meijin’33374.00
‘锦绣’* ‘Jinxiu’*354.00MR
‘锦霞’‘Jinxia’354.00MR
‘五月鲜’ ‘Wuyuexian’354.00MR
‘大珍宝赤月’ ‘Reddomun’33574.50
‘京玉’ ‘Jingyu’33574.50
‘南方金蜜’‘Nanfangjinmi’13594.50
‘中油桃8号’‘Zhongyoutao 8’13594.50
‘超丽春’‘Chaolichun’03794.75
‘梦露水晶’* ‘Menglushuijing’*33775.00
‘深州水蜜’ ‘Shenzhou Shuimi’33775.00
‘春蜜’ ‘Chunmi’35575.00
‘中油桃12号’‘Zhongyoutao 12’3395.00
‘七月红不软’ ‘Qiyuehongburuan’555.00S
‘雪雨露’* ‘Xueyulu’*555.00S
‘早凤凰’ ‘Zaofenghuang’555.00S
‘仓方早生’* ‘Kurakato Wase’*555.00S
‘中蟠桃11号’ ‘Zhongpantao 11’555.00S
‘沪油007’*‘Huyou 007’*555.00S
‘沪油015’*‘Huyou 015’*555.00S
‘沪油018’*‘Huyou 018’*555.00S
‘锦春’* ‘Jinchun’*33795.50
‘紫金红1号’*‘Zijinhong 1’*33795.50
‘加州早甜’ ‘Jiazhouzaotian’3775.67
‘中油桃4号’‘Zhongyoutao 4’33996.00
‘肥城白里’ ‘Feicheng Baili’5776.33S
‘中油桃5号’‘Zhongyoutao 5’777.00HS
‘顶香’‘Flavortop’777.00HS
‘沪油004’*‘Huyou 004’*777.00HS
‘白露桃’ ‘Bailutao’999.00HS
‘沪油278’*‘Huyou 278’*999.00HS
‘沪油002’*‘Huyou 002’*999.00HS
Table 1 Evaluation of gummosis disease levels of 110 peach/nectarine varieties

树龄

Tree age/a

总品种数

Total number of

varieties

不同流胶病等级品种数

Number of varieties with different gummosis disease levels

平均流胶病等级

Average gummosis

disease level

0级

Level 0

1级

Level 1

3级

Level 3

5级

Level 5

7级

Level 7

9级

Level 9

4532319110000.98
5621029212001.65
6109103629201043.02
7107134262313103.81
Table 2 Incidence of gummosis disease in peach/nectarine varieties with different tree ages
Fig. 1 Field performance of peach/nectarine trees with different gummosis disease levels
Fig. 2 Differences in gummosis disease levels among different types of varietiesDouble asterisks (**) indicate highly significant differences at the 0.01 probability level, and the symbol “ns” indicates no statistical differences.
Fig. 3 Quantity distribution of differently resistant varietiesHR: High resistance; R: Resistance; MR: Moderate resistance; S: Susceptibility; HS: High susceptibility.
Fig. 4 Genetic pedigrees of some high resistant varieties (A) and low resistant varieties (B)The red line represents the maternal parent, and the blue line represents the paternal parent, and the purple line represents mutation or self-cross. HR: High resistance; R: Resistance; MR: Moderate resistance; S: Susceptibility; HS: High susceptibility; /: No statistics on gummosis disease resistance.
[1]   FAWCETT H S, BURGER O F. A gum-inducing Diplodia of peach and orange[J]. Mycologia, 1911, 3(3): 151-153. DOI: 10.1080/00275514.1911.12017670
doi: 10.1080/00275514.1911.12017670
[2]   马瑞娟,俞明亮,杜平,等.桃流胶病研究进展[J].果树学报,2002,19(4):262-264. DOI:10.3969/j.issn.1009-9980.2002.04.013
MA R J, YU M L, DU P, et al. Advances in research of peach gummosis[J]. Journal of Fruit Science, 2002, 19(4): 262-264. (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-9980.2002.04.013
[3]   陈利锋,徐敬友.农业植物病理学[M].北京:中国农业出版社,2013:420-428.
CHEN L F, XU J Y. Agricultural Plant Pathology[M]. Beijing: China Agriculture Press, 2013: 420-428. (in Chinese)
[4]   BRITTON K O, HENDRIX F F, PUSEY P L, et al. Evaluating the reaction of peach cultivars to infection by three Botryo-sphaeria species[J]. HortScience, 1990, 25(4): 468-470. DOI: 10.21273/hortsci.25.4.468
doi: 10.21273/hortsci.25.4.468
[5]   WANG F, ZHAO L N, LI G H, et al. Identification and characterization of Botryosphaeria spp. causing gummosis of peach trees in Hubei Province, central China[J]. Plant Disease, 2011, 95(11): 1378-1384. DOI: 10.1094/PDIS-12-10-0893
doi: 10.1094/PDIS-12-10-0893
[6]   WEAVER D J. A gummosis disease of peach trees caused by Botryosphaeria dothidea [J]. Phytopathology, 1974, 64(11): 1429-1432. DOI: 10.1094/phyto-64-1429
doi: 10.1094/phyto-64-1429
[7]   LI M J, LIU M Y, PENG F T, et al. Influence factors and gene expression patterns during MeJa-induced gummosis in peach[J]. Journal of Plant Physiology, 2015, 182: 49-61. DOI: 10.1016/j.jplph.2015.03.019
doi: 10.1016/j.jplph.2015.03.019
[8]   邓素枫,杨玉,徐海.桃树流胶病及其防治方法研究进展[J].湖南农业科学,2018(12):111-114. DOI:10.16498/j.cnki.hnnykx.2018.012.026
DENG S F, YANG Y, XU H. Research progress of peach gummosis and the status of its prevention and controlits[J]. Hunan Agricultural Sciences, 2018(12): 111-114. (in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2018.012.026
[9]   王艳,刘俊俊.桃树流胶病的成因及综合预防措施[J].河北果树,2022(2):40. DOI:10.19440/j.cnki.1006-9402.2022.02.018
WANG Y, LIU J J. Occurrence and comprehensive prevention of peach gummosis disease[J]. Hebei Fruits, 2022(2): 40. (in Chinese)
doi: 10.19440/j.cnki.1006-9402.2022.02.018
[10]   BECKMAN T G, PUSEY P L, BERTRAND P F. Impact of fungal gummosis on peach trees[J]. HortScience, 2003, 38(6): 1141-1143. DOI: 10.21273/hortsci.38.6.1141
doi: 10.21273/hortsci.38.6.1141
[11]   LI X H, ZHANG Y Z, WEI Z W, et al. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis[J]. PLoS ONE, 2016, 11(9): e0162125. DOI: 10.1371/journal.pone.0162125
doi: 10.1371/journal.pone.0162125
[12]   董施源,文生巧,徐德鹏,等.内生性枯草芽孢杆菌J5对桃流胶病生防潜能的初步研究[J].植物病理学报,2017,47(5):696-703. DOI:10.13926/j.cnki.apps.000031
DONG S Y, WEN S Q, XU D P, et al. Preliminary study on the biocontrol potential of endophytic Bacillus subtilis J5 to peach fungal gummosis[J]. Acta Phytopathologica Sinica, 2017, 47(5): 696-703. (in Chinese with English abstract)
doi: 10.13926/j.cnki.apps.000031
[13]   叶正文,李雄伟,周京一,等.桃流胶病研究进展[J].上海农业学报,2020,36(2):146-150. DOI:10.15955/j.issn1000-3924.2020.02.24
YE Z W, LI X W, ZHOU J Y, et al. Advances in peach gummosis disease[J]. Acta Agriculturae Shanghai, 2020, 36(2): 146-150. (in Chinese with English abstract)
doi: 10.15955/j.issn1000-3924.2020.02.24
[14]   罗江会.桃流胶病的发生及其病原菌研究[D].重庆:西南大学,2006.
LUO J H. Study on the incidence and pathogen of peach tree gummosis[D]. Chongqing: Southwest University, 2006. (in Chinese with English abstract)
[15]   赵密珍,郭洪,周建涛.不同桃树品种抗流胶病的调查[J].中国果树,1996(3):45-46. DOI:10.16626/j.cnki.issn1000-8047.1996.03.028
ZHAO M Z, GUO H, ZHOU J T. Investigation on gummosis disease resistance of different peach cultivars[J]. China Fruits, 1996(3): 45-46. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.1996.03.028
[16]   BECKMAN T G, REILLY C C. Relative susceptibility of peach cultivars to fungal gummosis (Botryosphaeria dothidea)[J]. Journal of the American Pomological Society, 2005, 59(2): 111-116.
[17]   BECKMAN T G, REILLY C C. Relative susceptibility of ornamental peach cultivars to fungal gummosis (Botryo-sphaeria dothidea)[J]. Journal of the American Pomological Society, 2006, 60(3): 149-154.
[18]   BECKMAN T G, REILLY C C, PUSEY P L, et al. Progress in the management of peach fungal gummosis (Botryosphaeria dothidea) in the southeastern US peach industry[J]. Journal of the American Pomological Society, 2011, 65(4): 192-200.
[19]   杨文,赵丽娜,郝磊,等.6个桃品种流胶病感病性的初步评价[J].华中农业大学学报,2015,34(3):13-18. DOI:10.13300/j.cnki.hnlkxb.2015.03.019
YANG W, ZHAO L N, HAO L, et al. Evaluating the susceptibility of six peach cultivars to gummosis[J]. Journal of Huazhong Agricultural University, 2015, 34(3): 13-18. (in Chinese with English abstract)
doi: 10.13300/j.cnki.hnlkxb.2015.03.019
[20]   李长林,裴忺,姚中华,等.武汉地区不同桃品种流胶病情况调查与评价[J].落叶果树,2020,52(5):53-54. DOI:10.13855/j.cnki.lygs.2020.05.017
LI C L, PEI X, YAO Z H, et al. Investigation and evaluation of gummosis disease of different peach varieties in Wuhan[J]. Deciduous Fruits, 2020, 52(5): 53-54. (in Chinese)
doi: 10.13855/j.cnki.lygs.2020.05.017
[21]   郝磊.桃流胶病发病的影响因子及防治技术探讨[D].武汉:华中农业大学,2013.
HAO L. The impact factors and the prevention technology of peach tree gummosis[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese with English abstract)
[22]   刘路弘.江苏桃流胶情况调查及桃胶营养成分分析[D].南京:南京农业大学,2020.
LIU L H. Study on the peach gummosis and nutritional compounds of peach gum in Jiangsu Province[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese with English abstract)
[23]   湖北省农业科学院. 桃流胶病分级和综合防控技术规程: [S].[S. l.: s. n.],2016. DOI:10.29268/stsc.2016.4.1.2
Hubei Academy of Agricultural Sciences. Classification and Integrated Control Technology of Peach Gummosis: DB42/T 1183—2016 [S]. [S. l.: s. n.], 2016. (in Chinese)
doi: 10.29268/stsc.2016.4.1.2
[24]   汪祖华,庄恩及.中国果树志:桃卷[M].北京:中国林业出版社,2001:127-330.
WANG Z H, ZHUANG E J. Chinese Fruit Tree Annals: Peach[M]. Beijing: China Forestry Publishing House, 2001: 127-330. (in Chinese)
[25]   王力荣,朱更瑞,方伟超,等.中国桃遗传资源[M].北京:中国农业出版社,2012:281-884.
WANG L R, ZHU G R, FANG W C, et al. Peach Genetic Resources in China[M]. Beijing: China Agriculture Press, 2012: 281-884. (in Chinese)
[26]   LI X W, WANG J B, SU M S, et al. Single nucleotide polymorphism detection for peach gummosis disease resistance by genome-wide association study[J]. Frontiers in Plant Science, 2021, 12: 763618. DOI: 10.3389/fpls.2021.763618
doi: 10.3389/fpls.2021.763618
[27]   马瑞娟,俞明亮,汤秀莲.桃杂种流胶病的抗病表现[J].落叶果树,1996():26-27. DOI:10.13855/j.cnki.lygs.1996.s1.020
MA R J, YU M L, TANG X L. The gummosis disease resistance performance of peach hybrid[J]. Deciduous Fruits, 1996(): 26-27. (in Chinese)
doi: 10.13855/j.cnki.lygs.1996.s1.020
[28]   陈宾如.上海水蜜桃探源[J].农业考古,1985(1):235-241.
CHEN B R. Study of the source of ‘Chinese Cling’ peach[J]. Agricultural Archaeology, 1985(1): 235-241. (in Chinese)
[1] Binhao WANG,Yanbo CHEN,Rongjie LIU,Dongqun WANG,Zuozhen DONG,Rui DI,Xiao WANG,Yuping WU. Effects of straw burning on pathogens and antibiotic resistance genes in paddy fields with bacterial leaf blight[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 840-852.
[2] Chenying LI,Ran WANG,Yan LIANG. Research progress on the regulation of vascular lignification on defense against bacterial wilt of plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 633-643.
[3] Zhiliang XIAO,Aiguo YANG,Meixiang ZHANG. Research progress on the molecular basis of plant-Ralstonia solanacearum recognition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 644-650.
[4] Mingchao XU,Qian HUANG,Kangni ZHANG,Xudong ZOU,Xingfan CHEN,Hong LU,Yanhui WANG,Zhi ZHANG. Breeding and utilization of recessive genic male sterile line LY31AB in Brassica napus L.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 507-515.
[5] Yudong QUAN,Kongming WU. Research progress of vegetative insecticidal protein Vip3 insect-resistant transgenic crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 672-682.
[6] Xi FANG,Youping XU,Xinzhong CAI. Research progress of fire blight in fruit trees[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 731-743.
[7] Mengjiao LIU,Hang YI,Xinzhong CAI. Cyclic nucleotide-gated ion channel gene CNGC3 positively regulates immunity against Sclerotinia sclerotiorum in Arabidopsis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 594-604.
[8] Xuyang ZHANG,Ying LIU,Linli LONG,Yongdong SU,Dongxing CHEN,Xiaoyang CHEN. Review on analysis of soil moisture changes caused by coal mining subsidence in arid and semi-arid areas and their potential effects on plant physiology and ecology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 415-425.
[9] Ming CAO,Zuxi LONG,Yongwei WANG,Yuxuan PAN,Jun WANG. Impact of soil physical properties on the driving performance of a tracked tractor on paddy soils in the plastic state[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 125-134.
[10] Biao TANG,Yun HAO,Jiahui LIN,Jingge WANG,Xiaofeng JI,Mingrong QIAN,Hua YANG. Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 647-659.
[11] Pengyao XIE,Haowei FU,Zheng TANG,Zhihong MA,Haiyan CEN. RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 415-428.
[12] Yongwei WANG,Zhuoliang HE,Jun WANG. Effects of boat-type parameters of boat-type tractor on working resistance and subsidence depth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 759-766.
[13] Gongga,Yifei WANG, Gesangzhuoma, Suolangsizhu, Nimayangzong, Labaciren. Identification of capsular serotype D Pasteurella multocida isolated from Tibetan swine and its biological characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 611-617.
[14] Qianqian TIAN,Fenglian HUANG,Kaixin WANG,Dajuan WAN,Jiaqi LI,Huan WANG. Land ecological suitability evaluation of nature reserve: with Wanfo Mountain Nature Reserve in Hunan Province as an example[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 201-208.
[15] Yibing ZENG,Liqiang JIANG,Guohua LI,Rui LIU,Hongye LI. Resistance and its molecular mechanism of Phyllosticta citricarpa and Phyllosticta citriasiana to benzimidazole fungicide[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 699-706.