Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 644-650    DOI: 10.3785/j.issn.1008-9209.2023.06.161
Special Topic: Major Bacterial and Viral Diseases in Crops     
Research progress on the molecular basis of plant-Ralstonia solanacearum recognition
Zhiliang XIAO1(),Aiguo YANG1,Meixiang ZHANG2()
1.Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
2.College of Life Sciences, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
Download: HTML   HTML (   PDF(832KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Ralstonia solanacearum causes bacterial wilt disease in multiple crops, which severely threatens the global crop safety production. This pathogen exhibits high genetic diversity and evolves rapidly, and there is a lack of effective disease-resistant varieties in production, which brings great challenges for effective disease control. Identifying receptor proteins in plants that recognize associated molecular patterns or effectors of R. solanacearum and elucidating their molecular recognition mechanisms can provide clues to understand the mechanisms of plant-pathogen interaction, and lay a basis for the development of broad-spectrum disease resistance in plants. This paper reviewed the recent progress on the molecular basis of plant-R. solanacearum recognition. We mainly focused on the identification and functional analysis of membrane and intracellular receptors that recognize R. solanacearum in plants, as well as the mechanism behind receptor recognition of the associated molecular patterns or effectors from R. solanacearum. Besides, we provide research prospects for the exploration and utilization of disease-resistant resources against R. solanacearum in the future.



Key wordsRalstonia solanacearum      recognition      effector      resistance protein     
Received: 16 June 2023      Published: 03 November 2023
CLC:  S432.42  
Corresponding Authors: Meixiang ZHANG     E-mail: xiaozhiliang@caas.cn;meixiangzhang@snnu.edu.cn
Cite this article:

Zhiliang XIAO,Aiguo YANG,Meixiang ZHANG. Research progress on the molecular basis of plant-Ralstonia solanacearum recognition. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 644-650.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.06.161     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/644


植物与青枯劳尔氏菌识别的分子基础研究进展

青枯劳尔氏菌(简称“青枯菌”)可在多种作物上引发细菌性青枯病,严重威胁全球作物的安全生产。青枯菌遗传多样性高、变异快,目前生产上缺乏有效的抗病品种,这给青枯病的防治带来了挑战。挖掘植物中识别青枯菌相关分子模式或效应子的受体蛋白,并解析其识别的分子机制,可为认识植物与青枯菌的互作机制提供线索,同时为植物广谱抗病性的创制奠定理论基础。本文综述了近年来植物与青枯菌识别的分子基础研究进展,重点介绍了植物中识别青枯菌的膜上受体和胞内受体的鉴定、功能解析,以及受体与青枯菌相关分子模式或效应子的识别机制,并对今后青枯病防控中抗病资源的挖掘和利用进行了展望。


关键词: 青枯劳尔氏菌,  识别,  效应子,  抗病蛋白 

病原菌蛋白

Pathogen protein

类型

Type

植物识别受体

Recognition receptor

in plant

描述

Description

文献

Reference

冷激蛋白

Cold shock protein

PAMPCORE茄科植物膜上受体CORE识别青枯菌冷激蛋白中保守肽段csp22;CORE的表达具有年龄依赖性[11]

鞭毛蛋白

Flagellin

PAMPGmFLS2a/b大豆中的GmFLS2a/b识别青枯菌鞭毛蛋白中的保守肽段flg22;在本氏烟中异源表达GmFLS2b/GmBAK1可提高本氏烟对青枯病的抗性[13]
PehCPAMP未鉴定PehC具有双重功能,既可以被植物识别,又可以抑制损伤信号触发的免疫[15]
RipP2无毒蛋白RPS4/RRS1RPS4/RRS1是被鉴定的第一个青枯菌胞内识别受体,除了可以识别青枯菌RipP2,还可以识别丁香假单胞菌AvrRPS4[31]
RipBN无毒蛋白SlPtr1番茄胞内受体Ptr1识别青枯菌RipBN,同时也识别丁香假单胞菌AvrRpt2[33]
RipB无毒蛋白ROQ1本氏烟胞内受体ROQ1蛋白不仅可以识别青枯菌RipB,还可识别丁香假单胞菌HopQ1蛋白和黄单胞菌XopQ蛋白[35-36]
RipE1无毒蛋白NbPtr1本氏烟NbPtr1识别青枯菌核心效应子RipE1[46]
RipAA无毒蛋白未知可在烟草上诱导超敏反应,在青枯菌GMI1000中同时敲除RipAA和RipP1后,在烟草上诱导超敏反应的活力显著降低[43]
RipP1无毒蛋白未知可在烟草上诱导超敏反应,在青枯菌GMI1000中同时敲除RipP1和RipAA后,在烟草上诱导超敏反应的活力显著降低[43]
RipAX2无毒蛋白未知茄子AG91-25的主效抗性位点EBWR9可识别青枯菌RipAX2[47]
Table 1 IdentifiedPAMP, avirulence protein and recognition receptor in R. solanacearum
[1]   JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. DOI: 10.1038/nature05286
doi: 10.1038/nature05286
[2]   SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430-439. DOI: 10.1038/s41559-018-0793-y
doi: 10.1038/s41559-018-0793-y
[3]   MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(6): 614-629. DOI: 10.1111/j.1364-3703.2012.00804.x
doi: 10.1111/j.1364-3703.2012.00804.x
[4]   PEETERS N, GUIDOT A, VAILLEAU F, et al. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era[J]. Molecular Plant Pathology, 2013, 14(7): 651-662. DOI: 10.1111/mpp.12038
doi: 10.1111/mpp.12038
[5]   DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8): 539-548. DOI: 10.1038/nrg2812
doi: 10.1038/nrg2812
[6]   ZHANG M X, CHIANG Y H, TORUÑO T Y, et al. The MAP4 kinase SIK1 ensures robust extracellular ROS burst and antibacterial immunity in plants[J]. Cell Host & Microbe, 2018, 24(3): 379-391.e5. DOI: 10.1016/j.chom.2018.08.007
doi: 10.1016/j.chom.2018.08.007
[7]   NGOU B P M, JONES J D G, DING P T. Plant immune networks[J]. Trends in Plant Science, 2022, 27(3): 255-273. DOI: 10.1016/j.tplants.2021.08.012
doi: 10.1016/j.tplants.2021.08.012
[8]   CUI H T, TSUDA K, PARKER J E. Effector-triggered immunity: from pathogen perception to robust defense[J]. Annual Review of Plant Biology, 2015, 66: 487-511. DOI: 10.1146/annurev-arplant-050213-040012
doi: 10.1146/annurev-arplant-050213-040012
[9]   YUAN M H, JIANG Z Y, BI G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 2021, 592(7852): 105-109. DOI: 10.1038/s41586-021-03316-6
doi: 10.1038/s41586-021-03316-6
[10]   SAUR I M L, KADOTA Y, SKLENAR J, et al. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana [J]. PNAS, 2016, 113(12): 3389-3394. DOI: 10.1073/pnas.1511847113
doi: 10.1073/pnas.1511847113
[11]   WANG L, ALBERT M, EINIG E, et al. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein[J]. Nature Plants, 2016, 2: 16185. DOI: 10.1038/nplants.2016.185
doi: 10.1038/nplants.2016.185
[12]   WEI Y L, CACERES-MORENO C, JIMENEZ-GONGORA T, et al. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family[J]. Plant Biotechnology Journal, 2018, 16(7): 1349-1362. DOI: 10.1111/pbi.12874
doi: 10.1111/pbi.12874
[13]   WEI Y L, BALACEANU A, RUFIAN J S, et al. An immune receptor complex evolved in soybean to perceive a polymor-phic bacterial flagellin[J]. Nature Communications, 2020, 11: 3763. DOI: 10.1038/s41467-020-17573-y
doi: 10.1038/s41467-020-17573-y
[14]   FAN L, FRÖHLICH K, MELZER E, et al. Genotyping-by-sequencing-based identification of Arabidopsis pattern recogni-tion receptor RLP32 recognizing proteobacterial translation initiation factor IF1[J]. Nature Communications, 2022, 13: 1294. DOI: 10.1038/s41467-022-28887-4
doi: 10.1038/s41467-022-28887-4
[15]   KE J J, ZHU W T, YUAN Y, et al. Duality of immune recognition by tomato and virulence activity of the Ralstonia solanacearum exo-polygalacturonase PehC[J]. The Plant Cell, 2023, 35(7): 2552-2569. DOI: 10.1093/plcell/koad098
doi: 10.1093/plcell/koad098
[16]   LIU H L, ZHANG S P, SCHELL M A, et al. Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence[J]. Molecular Plant-Microbe Interactions, 2005, 18(12): 1296-1305. DOI: 10.1094/MPMI-18-1296
doi: 10.1094/MPMI-18-1296
[17]   NGOU B P M, DING P T, JONES J D G. Thirty years of resistance: zig-zag through the plant immune system[J]. The Plant Cell, 2022, 34(5): 1447-1478. DOI: 10.1093/plcell/koac041
doi: 10.1093/plcell/koac041
[18]   KOURELIS J, VAN DER HOORN R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function[J]. The Plant Cell, 2018, 30(2): 285-299. DOI: 10.1105/tpc.17.00579
doi: 10.1105/tpc.17.00579
[19]   WANG J Z, SONG W, CHAI J J. Structure, biochemical function, and signaling mechanism of plant NLRs[J]. Molecular Plant, 2023, 16(1): 75-95. DOI: 10.1016/j.molp.2022.11.011
doi: 10.1016/j.molp.2022.11.011
[20]   EITAS T K, DANGL J L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways[J]. Current Opinion in Plant Biology, 2010, 13(4): 472-477. DOI: 10.1016/j.pbi.2010.04.007
doi: 10.1016/j.pbi.2010.04.007
[21]   LANDRY D, GONZÁLEZ-FUENTE M, DESLANDES L, et al. The large, diverse, and robust arsenal of Ralstonia solanacearum type Ⅲ effectors and their in planta functions[J]. Molecular Plant Pathology, 2020, 21(10): 1377-1388. DOI: 10.1111/mpp.12977
doi: 10.1111/mpp.12977
[22]   VASSE J, GENIN S, FREY P, et al. The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process[J]. Molecular Plant-Microbe Interactions, 2000, 13(3): 259-267. DOI: 10.1094/MPMI.2000.13.3.259
doi: 10.1094/MPMI.2000.13.3.259
[23]   YU G, DERKACHEVA M, RUFIAN J S, et al. The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-Ⅲ effector[J]. The EMBO Journal, 2022, 41(23): e107257. DOI: 10.15252/embj.2020107257
doi: 10.15252/embj.2020107257
[24]   YU G, XIAN L, XUE H, et al. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity[J]. PLoS Pathogens, 2020, 16(9): e1008933. DOI: 10.1371/journal.ppat.1008933
doi: 10.1371/journal.ppat.1008933
[25]   QI P P, HUANG M L, HU X H, et al. A Ralstonia solana-cearum effector targets TGA transcription factors to subvert salicylic acid signaling[J]. The Plant Cell, 2022, 34(5): 1666-1683. DOI: 10.1093/plcell/koac015
doi: 10.1093/plcell/koac015
[26]   CAO P, CHEN J L, WANG R B, et al. A conserved type Ⅲ effector RipB is recognized in tobacco and contributes to Ralstonia solanacearum virulence in susceptible host plants[J]. Biochemical and Biophysical Research Communications, 2022, 631: 18-24. DOI: 10.1016/j.bbrc.2022.09.062
doi: 10.1016/j.bbrc.2022.09.062
[27]   XIAN L, YU G, WEI Y L, et al. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition[J]. Cell Host & Microbe, 2020, 28(4): 548-557.e7. DOI: 10.1016/j.chom.2020.07.003
doi: 10.1016/j.chom.2020.07.003
[28]   DESLANDES L, OLIVIER J, PEETERS N, et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type Ⅲ effector targeted to the plant nucleus[J]. PNAS, 2003, 100(13): 8024-8029. DOI: 10.1073/pnas.1230660100
doi: 10.1073/pnas.1230660100
[29]   SOHN K H, SEGONZAC C, RALLAPALLI G, et al. The nuclear immune receptor RPS4 is required for RRS1SLH1 -dependent constitutive defense activation in Arabidopsis thaliana [J]. PLoS Genetics, 2014, 10(10): e1004655. DOI: 10.1371/journal.pgen.1004655
doi: 10.1371/journal.pgen.1004655
[30]   WILLIAMS S J, SOHN K H, WAN L, et al. Structural basis for assembly and function of a heterodimeric plant immune receptor[J]. Science, 2014, 344(6181): 299-303. DOI: 10.1126/science.1247357
doi: 10.1126/science.1247357
[31]   LE ROUX C, HUET G, JAUNEAU A, et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity[J]. Cell, 2015, 161(5): 1074-1088. DOI: 10.1016/j.cell.2015.04.025
doi: 10.1016/j.cell.2015.04.025
[32]   MAZO-MOLINA C, MAINIERO S, HAEFNER B J, et al. Ptr1 evolved convergently with RPS2 and Mr5 to mediate recognition of AvrRpt2 in diverse solanaceous species[J]. The Plant Journal, 2020, 103(4): 1433-1445. DOI: 10.1111/tpj.14810
doi: 10.1111/tpj.14810
[33]   MAZO-MOLINA C, MAINIERO S, HIND S R, et al. The Ptr1 locus of Solanum lycopersicoides confers resistance to race 1 strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by recognizing the type Ⅲ effectors AvrRpt2 and RipBN[J]. Molecular Plant-Microbe Interactions, 2019, 32(8): 949-960. DOI: 10.1094/MPMI-01-19-0018-R
doi: 10.1094/MPMI-01-19-0018-R
[34]   NAKANO M, MUKAIHARA T. The type Ⅲ effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species[J]. Molecular Plant Pathology, 2019, 20(9): 1237-1251. DOI: 10.1111/mpp.12824
doi: 10.1111/mpp.12824
[35]   SCHULTINK A, QI T C, LEE A, et al. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1[J]. The Plant Journal, 2017, 92(5): 787-795. DOI: 10.1111/tpj.13715
doi: 10.1111/tpj.13715
[36]   THOMAS N C, HENDRICH C G, GILL U S, et al. The immune receptor Roq1 confers resistance to the bacterial pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in tomato[J]. Frontiers in Plant Science, 2020, 11: 463. DOI: 10.3389/fpls.2020.00463
doi: 10.3389/fpls.2020.00463
[37]   MARTIN R, QI T C, ZHANG H B, et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ[J]. Science, 2020, 370(6521): eabd9993. DOI: 10.1126/science.abd9993
doi: 10.1126/science.abd9993
[38]   JEON H, KIM W, KIM B, et al. Ralstonia solanacearum type Ⅲ effectors with predicted nuclear localization signal localize to various cell compartments and modulate immune responses in Nicotiana spp.[J]. The Plant Pathology Journal, 2020, 36(1): 43-53. DOI: 10.5423/PPJ.OA.08.2019.0227
doi: 10.5423/PPJ.OA.08.2019.0227
[39]   SOLÉ M, POPA C, MITH O, et al. The awr gene family encodes a novel class of Ralstonia solanacearum type Ⅲeffectors displaying virulence and avirulence activities[J]. Molecular Plant-Microbe Interactions, 2012, 25(7): 941-953. DOI: 10.1094/MPMI-12-11-0321
doi: 10.1094/MPMI-12-11-0321
[40]   ZHUO T, WANG X, CHEN Z Y, et al. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana [J]. Molecular Plant Pathology, 2020, 21(7): 999-1004. DOI: 10.1111/mpp.12937
doi: 10.1111/mpp.12937
[41]   NIU Y, FU S Y, CHEN G, et al. Different epitopes of Ralstonia solanacearum effector RipAW are recognized by two Nicotiana species and trigger immune responses[J]. Molecular Plant Pathology, 2022, 23(2): 188-203. DOI: 10.1111/mpp.13153
doi: 10.1111/mpp.13153
[42]   SANG Y Y, YU W J, ZHUANG H Y, et al. Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-Ⅲ effectors in Nicotiana benthamiana [J]. Plant Communications, 2020, 1: 100025. DOI: 10.1016/j.xplc.2020.100025
doi: 10.1016/j.xplc.2020.100025
[43]   POUEYMIRO M, CUNNAC S, BARBERIS P, et al. Two type Ⅲ secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco[J]. Molecular Plant-Microbe Interactions, 2009, 22(5): 538-550. DOI: 10.1094/MPMI-22-5-0538
doi: 10.1094/MPMI-22-5-0538
[44]   CARNEY B F, DENNY T P. A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level[J]. Journal of Bacteriology, 1990, 172(9): 4836-4843.
[45]   LACOMBE S, ROUGON-CARDOSO A, SHERWOOD E, et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance[J]. Nature Biotechnology, 2010, 28(4): 365-369. DOI: 10.1038/nbt.1613
doi: 10.1038/nbt.1613
[46]   KIM B, KIM I, YU W J, et al. The Ralstonia pseudo-solanacearum effector RipE1 is recognized at the plasma membrane by NbPtr1, the Nicotiana benthamiana homologue of Pseudomonas tomato race 1 [J]. Molecular Plant Pathology, 2023, 24(10): 1312-1318. DOI: 10.1111/mpp.13363
doi: 10.1111/mpp.13363
[1] Chenying LI,Ran WANG,Yan LIANG. Research progress on the regulation of vascular lignification on defense against bacterial wilt of plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 633-643.
[2] Xiaohui WANG,Kunpeng ZHOU. Research on recognition methods for red tomato image in the natural environment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 395-403.
[3] YU Xinjie, WU Xiongfei, SHEN Weiliang. Pattern recognition method for the identification of Daiqu large yellow croaker based on computer vision#br#[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 490-498.
[4] ZHOU Jun, DING Wenjie, ZHU Xuejun, CAO Junyi, NIU Xueming. Evaluation on formation rate of Pleurotus eryngii primordium under different humidity conditions by computer vision[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 262-272.
[5] Cao Leping, Wen Zhiyuan. Citrus quality grading based on statistical complexity measurement and multifractal spectrum method[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 309-319.