Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 633-643    DOI: 10.3785/j.issn.1008-9209.2023.06.171
Special Topic: Major Bacterial and Viral Diseases in Crops     
Research progress on the regulation of vascular lignification on defense against bacterial wilt of plants
Chenying LI(),Ran WANG,Yan LIANG()
Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(2188KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacterial wilt, a typical vascular disease caused by Ralstonia solanacearum, is one of the most devastating diseases and dramatically reduces crop yield and quality. The most effective strategy for controlling wilt disease is breeding disease-resistant varieties, which requires understanding the molecular mechanisms underlying plant immune responses against R. solanacearum. However, more and more evidence suggests that vascular immune responses are cell type specific. After sensing of R. solanacearum, the cell wall lignification of vascular tissues plays a vital role in restricting the spread of R. solanacearum. Lignin biosynthesis pathway genes are strictly controlled at the transcriptional, translational, and spatial-temporal specific expression aspects. Here, we summarized the current understanding of the recognition and signal transductionupon R. solanacearum infection and the research progress of pathogen-induced vascular lignification on regulating resistance to R. solanacearum, including the expression of lignin biosynthesis genes, the transport and polymerization of monolignols, and the generation of different types of lignin. We hope that this review will provide a theoretical basis for breeding bacterial wilt disease-resistant cultivars by modifying vascular lignification.



Key wordsbacterial wilt      Ralstonia solanacearum      lignification      cell wall      induced resistance     
Received: 17 June 2023      Published: 03 November 2023
CLC:  S432  
Corresponding Authors: Yan LIANG     E-mail: lichenying@zju.edu.cn;yanliang@zju.edu.cn
Cite this article:

Chenying LI,Ran WANG,Yan LIANG. Research progress on the regulation of vascular lignification on defense against bacterial wilt of plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 633-643.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.06.171     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/633


维管束木质化调控植物抗青枯病的研究进展

细菌性青枯病是由青枯劳尔氏菌(Ralstonia solanacearum)(以下简称“青枯菌”)引起的一种典型的维管束病害,发病后严重影响作物产量与品质。选育抗病品种是从根本上解决青枯病危害的最有效措施,而了解植物免疫反应的分子机制是抗病育种的基础。越来越多的研究表明,维管束免疫具有细胞类型特异性。植物识别青枯菌后,通过信号传导诱导维管束细胞壁木质化,形成植物抵御青枯菌扩散的主要屏障。木质素的合成受到精细的调控,其关键合成酶基因在转录、翻译、时空特异性表达等不同方面受到调控。本文综述了植物对青枯菌的识别和信号传导机制,以及诱导维管束木质化调控青枯病抗性的研究进展,包括诱导木质素合成基因表达、木质素单体转运和聚合、不同木质素类型产生等分子机制,以期为利用维管束木质化改性技术进行青枯病的抗性育种提供理论依据。


关键词: 细菌性青枯病,  青枯劳尔氏菌,  木质化,  细胞壁,  诱导抗性 
Fig. 1 Lignin biosynthesis pathwayPAL: Phenylalanine ammonia-lyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-coumarate CoA ligase; HCT: Hydroxycinnamoyl transferase; C3H: p-coumarate-3-hydroxylase; CCoAOMT: Caffeoyl-CoA O-methyltransferase; CCR: Cinnamoyl-CoA reductase; CAD: Cinnamyl alcohol dehydrogenase; PD: Passive diffusion; ABC trans: ATP-binding cassette transporter; PCA: Proton-coupled antiporter.
Fig. 2 Regulation of lignin biosynthesis via plant immune signaling moleculesPAMPs: Pathogen-associated molecular patterns; PRRs: Pattern recognition receptors; NLRs: Nucleotide-binding domain and leucine-rich repeats; ROS: Reactive oxygen species; MAPK: Mitogen-activated protein kinase; SOD: Superoxide dismutase.
[1]   XUE H, LOZANO-DURÁN R, MACHO A P. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum [J]. Plants, 2020, 9(4): 516. DOI: 10.3390/plants9040516
doi: 10.3390/plants9040516
[2]   XIAN L, YU G, WEI Y L, et al. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition[J]. Cell Host & Microbe, 2020, 28(4): 548-557.e7. DOI: 10.1016/j.chom.2020.07.003
doi: 10.1016/j.chom.2020.07.003
[3]   XIAN L, YU G, MACHO A P. The GABA transaminase GabT is required for full virulence of Ralstonia solanacearum in tomato[J]. microPublication Biology, 2021.
[4]   JIANG G F, WEI Z, XU J, et al. Bacterial wilt in China: history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8: 1549. DOI: 10.3389/fpls.2017.01549
doi: 10.3389/fpls.2017.01549
[5]   LOWE-POWER T M, KHOKHANI D, ALLEN C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment[J]. Trends in Microbiology, 2018, 26(11): 929-942. DOI: 10.1016/j.tim.2018.06.002
doi: 10.1016/j.tim.2018.06.002
[6]   MILLING A, BABUJEE L, ALLEN C. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants[J]. PLoS ONE, 2011, 6(1): e15853. DOI: 10.1371/journal.pone.0015853
doi: 10.1371/journal.pone.0015853
[7]   邱拓宇,杜文青,朱金籴,等.番茄青枯病防治技术研究进展[J].乡村科技,2022(13):71-73. DOI:10.19345/j.cnki.1674-7909.2022.13.024
QIU T Y, DU W Q, ZHU J D, et al. Research progress of tomato bacterial wilt control technology[J]. Xiangcun Keji, 2022(13): 71-73. (in Chinese)
doi: 10.19345/j.cnki.1674-7909.2022.13.024
[8]   牛义岭,商丽敏.番茄青枯病的发生及防治[J].现代农业科技,2023(12):100-102, 108. DOI:10.3969/j.issn.1007-5739.2023.12.024
NIU Y L, SHANG L M. Occurrence and control of tomato bacterial wilt[J]. Modern Agricultural Science and Technology, 2023(12): 100-102, 108. (in Chinese)
doi: 10.3969/j.issn.1007-5739.2023.12.024
[9]   IRIEDA H, TAKANO Y. Epidermal chloroplasts are defense-related motile organelles equipped with plant immune com-ponents[J]. Nature Communications, 2021, 12: 2739. DOI: 10.1038/s41467-021-22977-5
doi: 10.1038/s41467-021-22977-5
[10]   PAAUW M, VAN HULTEN M, CHATTERJEE S, et al. Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens[J]. Current Biology, 2023, 33(4): 697-710.e6. DOI: 10.1016/j.cub.2023.01.013
doi: 10.1016/j.cub.2023.01.013
[11]   MELOTTO M, UNDERWOOD W, KOCZAN J, et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126(5): 969-980. DOI: 10.1016/j.cell.2006.06.054
doi: 10.1016/j.cell.2006.06.054
[12]   PFUND C, TANS-KERSTEN J, DUNNING F M, et al. Flagellin is not a major defense elicitor in Ralstonia solana-cearum cells or extracts applied to Arabidopsis thaliana [J]. Molecular Plant-Microbe Interactions, 2004, 17(6): 696-706. DOI: 10.1094/MPMI.2004.17.6.696
doi: 10.1094/MPMI.2004.17.6.696
[13]   WEI Y L, BALACEANU A, RUFIAN J S, et al. An immune receptor complex evolved in soybean to perceive a poly-morphic bacterial flagellin[J]. Nature Communications, 2020, 11: 3763. DOI: 10.1038/s41467-020-17573-y
doi: 10.1038/s41467-020-17573-y
[14]   WANG L, ALBERT M, EINIG E, et al. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein[J]. Nature Plants, 2016, 2: 16185. DOI: 10.1038/nplants.2016.185
doi: 10.1038/nplants.2016.185
[15]   DALLA-RIZZA M, SCHVARTZMAN C, MURCHIO S, et al. Field performance of resistant potato genotypes transformed with the EFR receptor from Arabidopsis thaliana in the absence of bacterial wilt (Ralstonia solanacearum)[J]. The Plant Pathology Journal, 2022, 38(3): 239-247. DOI: 10.5423/PPJ.OA.01.2022.0008
doi: 10.5423/PPJ.OA.01.2022.0008
[16]   YUAN M H, JIANG Z Y, BI G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 2021, 592(7852): 105-109. DOI: 10.1038/s41586-021-03316-6
doi: 10.1038/s41586-021-03316-6
[17]   MITTLER R, ZANDALINAS S I, FICHMAN Y, et al. Reactive oxygen species signalling in plant stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23: 663-679. DOI: 10.1038/s41580-022-00499-2
doi: 10.1038/s41580-022-00499-2
[18]   WANG R Y, HE F, NING Y S, et al. Fine-tuning of RBOH-mediated ROS signaling in plant immunity[J]. Trends in Plant Science, 2020, 25(11): 1060-1062. DOI: 10.1016/j.tplants.2020.08.001
doi: 10.1016/j.tplants.2020.08.001
[19]   WU B Y, LI P, HONG X F, et al. The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling ROS production[J]. Molecular Plant, 2022, 15(5): 887-903. DOI: 10.1016/j.molp.2022.03.003
doi: 10.1016/j.molp.2022.03.003
[20]   LI P, ZHAO L L, QI F, et al. The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system[J]. Molecular Plant, 2021, 14(10): 1652-1667. DOI: 10.1016/j.molp.2021.06.010
doi: 10.1016/j.molp.2021.06.010
[21]   WANG R, LI C Y, LI Q H, et al. Tomato receptor-like cytosolic kinase RIPK confers broad-spectrum disease resistance without yield penalties[J]. Horticulture Research, 2022, 9: uhac207. DOI: 10.1093/hr/uhac207
doi: 10.1093/hr/uhac207
[22]   QI P P, HUANG M L, HU X H, et al. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling[J]. The Plant Cell, 2022, 34(5): 1666-1683. DOI: 10.1093/plcell/koac015
doi: 10.1093/plcell/koac015
[23]   MENG X Z, ZHANG S Q. MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013, 51: 245-266. DOI: 10.1146/annurev-phyto-082712-102314
doi: 10.1146/annurev-phyto-082712-102314
[24]   CHEN Y Y, LIN Y M, CHAO T C, et al. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt[J]. Physiologia Plantarum, 2009, 136(3): 324-335. DOI: 10.1111/j.1399-3054.2009.01226.x
doi: 10.1111/j.1399-3054.2009.01226.x
[25]   WANG B S, HUANG M S, HE W F, et al. Protein phosphatase StTOPP6 negatively regulates potato bacterial wilt resistance by modulating MAPK signaling[J]. Journal of Experimental Botany, 2023, 74(14): 4208-4224. DOI: 10.1093/jxb/erad145
doi: 10.1093/jxb/erad145
[26]   YU G, XIAN L, XUE H, et al. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity[J]. PLoS Pathogens, 2020, 16(9): e1008933. DOI: 10.1371/journal.ppat.1008933
doi: 10.1371/journal.ppat.1008933
[27]   CHEN X K, WANG W B, CAI P P, et al. The role of the MAP kinase-kinase protein StMKK1 in potato immunity to different pathogens[J]. Horticulture Research, 2021, 8: 117. DOI: 10.1038/s41438-021-00556-5
doi: 10.1038/s41438-021-00556-5
[28]   VASSE J, FREY P, TRIGALET A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum [J]. Molecular Plant-Microbe Interactions, 1995, 8(2): 241-251.
[29]   RAHMAN M A, ABDULLAH H, VANHAECKE M. Histopathology of susceptible and resistant Capsicum annuum cultivars infected with Ralstonia solanacearum [J]. Journal of Phytopathology, 1999, 147(3): 129-140. DOI: 10.1111/j.1439-0434.1999.tb03819.x
doi: 10.1111/j.1439-0434.1999.tb03819.x
[30]   ISHIHARA T, MITSUHARA I, TAKAHASHI H, et al. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato[J]. PLoS ONE, 2012, 7(10): e46763. DOI: 10.1371/journal.pone.0046763
doi: 10.1371/journal.pone.0046763
[31]   KIM S G, HUR O S, RO N Y, et al. Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage[J]. The Plant Pathology Journal, 2016, 32(1): 58-64. DOI: 10.5423/PPJ.NT.06.2015.0121
doi: 10.5423/PPJ.NT.06.2015.0121
[32]   NAKAHO K, HIBINO H, MIYAGAWA H. Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues[J]. Journal of Phytopathology, 2000, 148(3): 181-190. DOI: 10.1046/j.1439-0434.2000.00476.x
doi: 10.1046/j.1439-0434.2000.00476.x
[33]   KASHYAP A, JIMÉNEZ-JIMÉNEZ Á L, ZHANG W Q, et al. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato[J]. New Phytologist, 2022, 234(4): 1411-1429. DOI: 10.1111/nph.17982
doi: 10.1111/nph.17982
[34]   BAUCHER M, HALPIN C, PETIT-CONIL M, et al. Lignin: genetic engineering and impact on pulping[J]. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38(4): 305-350. DOI: 10.1080/10409230391036757
doi: 10.1080/10409230391036757
[35]   VANHOLME R, DE MEESTER B, RALPH J, et al. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology, 2019, 56: 230-239. DOI: 10.1016/j.copbio.2019.02.018
doi: 10.1016/j.copbio.2019.02.018
[36]   BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54: 519-546. DOI: 10.1146/annurev.arplant.54.031902.134938
doi: 10.1146/annurev.arplant.54.031902.134938
[37]   VOGT T. Phenylpropanoid biosynthesis[J]. Molecular Plant, 2010, 3(1): 2-20. DOI: 10.1093/mp/ssp106
doi: 10.1093/mp/ssp106
[38]   BARROS J, SERRANI-YARCE J C, CHEN F, et al. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis[J]. Nature Plants, 2016, 2(6): 16050. DOI: 10.1038/nplants.2016.50
doi: 10.1038/nplants.2016.50
[39]   BARROS J, DIXON R A. Plant phenylalanine/tyrosine ammonia-lyases[J]. Trends in Plant Science, 2020, 25(1): 66-79. DOI: 10.1016/j.tplants.2019.09.011
doi: 10.1016/j.tplants.2019.09.011
[40]   PETRIK D L, KARLEN S D, CASS C L, et al. p-coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon [J]. The Plant Journal, 2014, 77(5): 713-726. DOI: 10.1111/tpj.12420
doi: 10.1111/tpj.12420
[41]   张帅帅,赵历强,许景垚,等.基于转录组测序的杜仲木脂素和木质素生物合成途径及关键酶分析[J].中国中药杂志,2022,47(14):3765-3772. DOI:10.19540/j.cnki.cjcmm.20220414.101
ZHANG S S, ZHAO L Q, XU J Y, et al. Identification of key enzyme genes involved in biosynthesis pathways of lignan and lignin in Eucommia ulmoides based on transcriptome assembly[J]. China Journal of Chinese Materia Medica, 2022, 47(14): 3765-3772. (in Chinese with English abstract)
doi: 10.19540/j.cnki.cjcmm.20220414.101
[42]   REYT G, RAMAKRISHNA P, SALAS-GONZÁLEZ I, et al. Two chemically distinct root lignin barriers control solute and water balance[J]. Nature Communications, 2021, 12: 2320. DOI: 10.1038/s41467-021-22550-0
doi: 10.1038/s41467-021-22550-0
[43]   CESARINO I. Structural features and regulation of lignin deposited upon biotic and abiotic stresses[J]. Current Opinion in Biotechnology, 2019, 56: 209-214. DOI: 10.1016/j.copbio.2018.12.012
doi: 10.1016/j.copbio.2018.12.012
[44]   OGAWA K, KANEMATSU S, ASADA K. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification[J]. Plant and Cell Physiology, 1997, 38(10): 1118-1126.
[45]   BARROS J, SERK H, GRANLUND I, et al. The cell biology of lignification in higher plants[J]. Annals of Botany, 2015, 115(7): 1053-1074. DOI: 10.1093/aob/mcv046
doi: 10.1093/aob/mcv046
[46]   WANG H Z, AVCI U, NAKASHIMA J, et al. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants[J]. PNAS, 2010, 107(51): 22338-22343. DOI: 10.1073/pnas.1016436107
doi: 10.1073/pnas.1016436107
[47]   TAYLOR-TEEPLES M, LIN L, DE LUCAS M, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis[J]. Nature, 2015, 517(7536): 571-575. DOI: 10.1038/nature14099
doi: 10.1038/nature14099
[48]   DOLAN W L, DILKES B P, STOUT J M, et al. Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis[J]. The Plant Cell, 2017, 29(12): 3269-3285. DOI: 10.1105/tpc.17.00282
doi: 10.1105/tpc.17.00282
[49]   WANG J P, CHUANG L, LOZIUK P L, et al. Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyl-transferase activity in poplar monolignol biosynthesis[J]. PNAS, 2015, 112(27): 8481-8486. DOI: 10.1073/pnas.1510473112
doi: 10.1073/pnas.1510473112
[50]   YAN X J, LIU J, KIM H, et al. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa [J]. New Phytologist, 2019, 222(1): 244-260. DOI: 10.1111/nph.15505
doi: 10.1111/nph.15505
[51]   LI H P, ZHANG S L, ZHAO Y L, et al. Identification and characterization of cinnamyl alcohol dehydrogenase encoding genes involved in lignin biosynthesis and resistance to Verticillium dahliae in upland cotton (Gossypium hirsutum L.)[J]. Frontiers in Plant Science, 2022, 13: 840397. DOI: 10.3389/fpls.2022.840397
doi: 10.3389/fpls.2022.840397
[52]   CHEN Q B, MAN C, LI D N, et al. Arogenate dehydratase isoforms differentially regulate anthocyanin biosynthesis in Arabidopsis thaliana [J]. Molecular Plant, 2016, 9(12): 1609-1619. DOI: 10.1016/j.molp.2016.09.010
doi: 10.1016/j.molp.2016.09.010
[53]   DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1): 180-209. DOI: 10.1111/jipb.13054
doi: 10.1111/jipb.13054
[54]   XIE M, ZHANG J, TSCHAPLINSKI T J, et al. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs[J]. Frontiers in Plant Science, 2018, 9: 1427. DOI: 10.3389/fpls.2018.01427
doi: 10.3389/fpls.2018.01427
[55]   WAN J X, HE M, HOU Q Q, et al. Cell wall associated immunity in plants[J]. Stress Biology, 2021, 1: 3. DOI: 10.1007/s44154-021-00003-4
doi: 10.1007/s44154-021-00003-4
[56]   LEE M H, JEON H S, KIM S H, et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants[J]. The EMBO Journal, 2019, 38(23): e101948. DOI: 10.15252/embj.2019101948
doi: 10.15252/embj.2019101948
[57]   KIM S H, LAM P Y, LEE M H, et al. The Arabidopsis R2R3 MYB transcription factor MYB15 is a key regulator of lignin biosynthesis in effector-triggered immunity[J]. Frontiers in Plant Science, 2020, 11: 583153. DOI: 10.3389/fpls.2020.583153
doi: 10.3389/fpls.2020.583153
[58]   ZHU Y T, HU X Q, WANG P, et al. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway[J]. International Journal of Biological Macromolecules, 2022, 201: 580-591. DOI: 10.1016/j.ijbiomac.2022.01.120
doi: 10.1016/j.ijbiomac.2022.01.120
[59]   XIAO S H, HU Q, SHEN J L, et al. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae [J]. Plant Cell Reports, 2021, 40(4): 735-751. DOI: 10.1007/s00299-021-02672-x
doi: 10.1007/s00299-021-02672-x
[60]   LIN H, WANG M Y, CHEN Y, et al. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants[J]. Science Advances, 2022, 8(10): eabg8723. DOI: 10.1126/sciadv.abg8723
doi: 10.1126/sciadv.abg8723
[61]   LI Y Y, WANG L, SUN G W, et al. Digital gene expression analysis of the response to Ralstonia solanacearum between resistant and susceptible tobacco varieties[J]. Scientific Reports, 2021, 11: 3887. DOI: 10.1038/s41598-021-82576-8
doi: 10.1038/s41598-021-82576-8
[62]   DANG F F, WANG Y N, YU L, et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection[J]. Plant, Cell & Environ-ment, 2013, 36(4): 757-774. DOI: 10.1111/pce.12011
doi: 10.1111/pce.12011
[63]   QIU Z K, YAN S S, XIA B, et al. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase [J]. Journal of Experimental Botany, 2019, 70(19): 5343-5354. DOI: 10.1093/jxb/erz259
doi: 10.1093/jxb/erz259
[64]   JOSE J, ÉVA C, BOZSÓ Z, et al. Global transcriptome and targeted metabolite analyses of roots reveal different defence mechanisms against Ralstonia solanacearum infection in two resistant potato cultivars[J]. Frontiers in Plant Science, 2022, 13: 1065419. DOI: 10.3389/fpls.2022.1065419
doi: 10.3389/fpls.2022.1065419
[65]   CAI W W, YANG S, WU R J, et al. Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses[J]. Plant Physiology, 2021, 186(4): 2169-2189. DOI: 10.1093/plphys/kiab190
doi: 10.1093/plphys/kiab190
[66]   潘晓英,张振臣,袁清华,等.植物抗青枯病的分子机制研究进展[J].植物生理学报,2022,58(4):607-621. DOI:10.13592/j.cnki.ppj.300015
PAN X Y, ZHANG Z C, YUAN Q H, et al. Research advances on molecular mechanisms of resistance to bacterial wilt in plants[J]. Plant Physiology Journal, 2022, 58(4): 607-621. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.300015
[67]   ZHOU X G, LIAO H C, CHERN M S, et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J]. PNAS, 2018, 115(12): 3174-3179. DOI: 10.1073/pnas.1705927115
doi: 10.1073/pnas.1705927115
[68]   JEON H S, JANG E, KIM J, et al. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity[J]. Autophagy, 2023, 19(2): 597-615. DOI: 10.1080/15548627.2022.2085496
doi: 10.1080/15548627.2022.2085496
[69]   KWON H, CHO D J, LEE H, et al. CCOAOMT1, a candidate cargo secreted via VAMP721/722 secretory vesicles in Arabidopsis [J]. Biochemical and Biophysical Research Com-munications, 2020, 524(4): 977-982. DOI: 10.1016/j.bbrc.2020.02.029
doi: 10.1016/j.bbrc.2020.02.029
[70]   WANG K K, YU W J, YU G, et al. A bacterial type Ⅲ effector targets plant vesicle-associated membrane proteins[J]. Molecular Plant Pathology, 2023, 24(9): 1154-1167. DOI: 10.1111/mpp.13360
doi: 10.1111/mpp.13360
[71]   LEE Y, RUBIO M C, ALASSIMONE J, et al. A mechanism for localized lignin deposition in the endodermis[J]. Cell, 2013, 153(2): 402-412. DOI: 10.1016/j.cell.2013.02.045
doi: 10.1016/j.cell.2013.02.045
[72]   LI Q, QIN X J, QI J J, et al. CsPrx25, a class Ⅲ peroxidase in Citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification[J]. Horticulture Research, 2020, 7: 192. DOI: 10.1038/s41438-020-00415-9
doi: 10.1038/s41438-020-00415-9
[73]   WEI T P, TANG Y, JIA P, et al. A cotton lignin biosynthesis gene, GhLAC4, fine-tuned by ghr-miR397 modulates plant resistance against Verticillium dahliae [J]. Frontiers in Plant Science, 2021, 12: 743795. DOI: 10.3389/fpls.2021.743795
doi: 10.3389/fpls.2021.743795
[74]   MENDEN B, KOHLHOFF M, MOERSCHBACHER B M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response[J]. Phytochemistry, 2007, 68(4): 513-520. DOI: 10.1016/j.phytochem.2006.11.011
doi: 10.1016/j.phytochem.2006.11.011
[75]   HANO C, ADDI M, BENSADDEK L, et al. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures[J]. Planta, 2006, 223(5): 975-989. DOI: 10.1007/s00425-005-0156-1
doi: 10.1007/s00425-005-0156-1
[76]   EYNCK C, SÉGUIN-SWARTZ G, CLARKE W E, et al. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa [J]. Molecular Plant Pathology, 2012, 13(8): 887-899. DOI: 10.1111/j.1364-3703.2012.00798.x
doi: 10.1111/j.1364-3703.2012.00798.x
[1] Hanqing ZHANG,Haiyan GAO,Ruiling LIU,Yanchao HAN,Xiangjun FANG,Hangjun CHEN. Effects of packaging of polyethylene bags with different thicknesses on storage quality and lignification of water bamboo[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 55-63.
[2] ZHOU Guo-Zhi, LI Zhi-Miao, YANG Yue-Jian, XING Juan, WANG Rong-Qing. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 390-394.