Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (4): 415-425    DOI: 10.3785/j.issn.1008-9209.2021.05.121
Reviews     
Review on analysis of soil moisture changes caused by coal mining subsidence in arid and semi-arid areas and their potential effects on plant physiology and ecology
Xuyang ZHANG1(),Ying LIU1,2,Linli LONG1,Yongdong SU1,Dongxing CHEN3,Xiaoyang CHEN1,2()
1.School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2.Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in High Water Level Mining Areas, Huainan 232001, Anhui, China
3.Engineering Research Center for Coal Mining Subsided Land and Goaf Treatment of Shandong, Jining 272100, Shandong, China
Download: HTML   HTML (   PDF(1143KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Soil moisture is a key factor that restricts plant growth. Coal mining subsidence causes cracks on the ground, coupled with the reduction of groundwater level, which further reduces the already low soil moisture content in arid and semi-arid areas. When the soil moisture content is lower than the drought stress threshold of plants, it will inevitably affect plant physiology and ecology. This article first analyzed the impact of coal mining subsidence on the water environment, and then summarized the potential changes of plant physiological and ecological indicators when the soil moisture content was less than the plant drought stress threshold, including leaf and root morphologies, photosynthetic physiological indicators, osmotic adjustment substances, water physiological indicators, antioxidant enzyme activities, and components and contents of drought-resistant proteins. In the future, it should strengthen the monitoring of the coordinated changes in soil moisture and plant physiology and ecology in the arid and semi-arid areas, and strive to reveal the response mechanism of plant physiology and ecology to soil moisture changes caused by coal mining subsidence, as well as strengthening the research on the prediction model of the impact of coal mining on vegetation physiology and ecology in arid and semi-arid areas.



Key wordsarid and semi-arid areas      drought resistance mechanism      coal mining subsidence      ground fissure      plant physiology and ecology      photosynthesis     
Received: 12 May 2021      Published: 03 September 2022
CLC:  X 173  
Corresponding Authors: Xiaoyang CHEN     E-mail: zxy374260025@163.com;chenxy@aust.edu.cn
Cite this article:

Xuyang ZHANG,Ying LIU,Linli LONG,Yongdong SU,Dongxing CHEN,Xiaoyang CHEN. Review on analysis of soil moisture changes caused by coal mining subsidence in arid and semi-arid areas and their potential effects on plant physiology and ecology. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 415-425.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.05.121     OR     https://www.zjujournals.com/agr/Y2022/V48/I4/415


干旱半干旱区采煤沉陷引起的土壤水分变化及其对植物生理生态潜在影响分析综述

土壤水分是限制植物生长的关键因子。采煤沉陷导致地表形成裂缝,加上地下水位降低,使得干旱半干旱区本就很低的土壤含水量进一步降低。当土壤含水量低于植物干旱胁迫阈值时,势必会影响植物的生理生态。本文分析了采煤沉陷对水环境的影响,综述了当土壤含水量低于植物干旱胁迫阈值时,植物生理生态指标,包括叶片与根系形态结构、光合生理指标、渗透调节物质、水分生理指标、抗氧化酶活性、抗旱蛋白含量和组分等的潜在变化。未来应加强对干旱半干旱区土壤水分与植物生理生态协同变化的监测,致力于揭示植物生理生态对采煤沉陷引起的土壤水分变化的响应机制;同时,加强干旱半干旱区煤炭开采对植被生理生态影响的预测模型的研究。


关键词: 干旱半干旱区,  抗旱机制,  采煤沉陷,  地裂缝,  植物生理生态,  光合作用 
Fig. 1 Effects of soil moisture changes caused by coal mining subsidence on plant physiology and ecology
[1]   谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960. DOI:10.13225/j.cnki.jccs.2019.0585
XIE H P, WU L X, ZHENG D Z. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960. (in Chinese with English abstract)
doi: 10.13225/j.cnki.jccs.2019.0585
[2]   彭苏萍,毕银丽.黄河流域煤矿区生态环境修复关键技术与战略思考[J].煤炭学报,2020,45(4):1211-1221. DOI:10.13225/j.cnki.jccs.2020.0444
PENG S P, BI Y L. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River Basin of China[J]. Journal of China Coal Society, 2020, 45(4): 1211-1221. (in Chinese with English abstract)
doi: 10.13225/j.cnki.jccs.2020.0444
[3]   马康,杨帆,张玉秀.西北干旱半干旱矿区煤炭井工开采对土壤肥力质量的影响研究进展[J].中国科学院大学学报,2020,37(4):442-449. DOI:10.75232/j.issn.2095-6134.2020.04.002
MA K, YANG F, ZHANG Y X. Influence of underground coal mining on soil fertility quality in the northwestern arid and semi-arid regions: a review[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(4): 442-449. (in Chinese with English abstract)
doi: 10.75232/j.issn.2095-6134.2020.04.002
[4]   程林森,雷少刚,卞正富.半干旱区煤炭开采对土壤含水量的影响[J].生态与农村环境学报,2016,32(2):219-223. DOI:10.11934/j.issn.1673-4831.2016.02.008
CHENG L S, LEI S G, BIAN Z F. Effect of coal mining on soil moisture content in semi-arid areas[J]. Journal of Ecology and Rural Environment, 2016, 32(2): 219-223. (in Chinese with English abstract)
doi: 10.11934/j.issn.1673-4831.2016.02.008
[5]   闵小莹,熊康宁,申小云,等.喀斯特石漠化地区植物对干旱胁迫的适应性研究进展[J].世界林业研究,2020,33(3):7-12. DOI:10.13348/j.cnki.sjlyyj.2020.0026.y
MIN X Y, XIONG K N, SHEN X Y, et al. Research progress of plant adaptability to drought stress in karst rocky desertification area[J]. World Forestry Research, 2020, 33(3): 7-12. (in Chinese with English abstract)
doi: 10.13348/j.cnki.sjlyyj.2020.0026.y
[6]   刘英.半干旱煤矿区受损植被引导型恢复研究[D].江苏,徐州:中国矿业大学,2020. DOI:10.22606/cwimp.2020.21001
LIU Y. Study on guided restoration of damaged vegetation in semi-arid coal mine area[D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2020. (in Chinese with English abstract)
doi: 10.22606/cwimp.2020.21001
[7]   王启庆,李文平,李涛.陕北生态脆弱区保水采煤地质条件分区类型研究[J].工程地质学报,2014,22(3):515-521. DOI:10.13544/j.ckni.jeg.2014.03.002
WANG Q Q, LI W P, LI T. Division types of geological conditions at mining with water protection in ecological fragile area of northern Shaanxi[J]. Journal of Engineering Geology, 2014, 22(3): 515-521. (in Chinese with English abstract)
doi: 10.13544/j.ckni.jeg.2014.03.002
[8]   史沛丽,张玉秀,胡振琪,等.采煤塌陷对中国西部风沙区土壤质量的影响机制及修复措施[J].中国科学院大学学报,2017,34(3):318-328. DOI:10.75232/j.issn.2095-6134.2017.03.006
SHI P L, ZHANG Y X, HU Z Q, et al. Influence mechanism of coal mining subsidence on soil quality and restoration measures in west China aeolian sand area[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(3): 318-328. (in Chinese with English abstract)
doi: 10.75232/j.issn.2095-6134.2017.03.006
[9]   刘英,雷少刚,陈孝杨,等.神东矿区植被覆盖度时序变化与驱动因素分析及引导恢复策略[J].煤炭学报, 2021,46(10):3319-3331. DOI:10.13225/j.cnki.jccs.2020.1387
LIU Y, LEI S G, CHEN X Y, et al. Temporal variation and driving factors of vegetation coverage in Shendong central mining area based on the perspective of guided restoration[J]. Journal of China Coal Society, 2021, 46(10): 3319-3331. (in Chinese with English abstract)
doi: 10.13225/j.cnki.jccs.2020.1387
[10]   赵红梅,张发旺,宋亚新,等.大柳塔采煤塌陷区土壤含水量的空间变异特征分析[J].地球信息科学学报,2010,12(6):753-760.
ZHAO H M, ZHANG F W, SONG Y X, et al. Spatial variation of soil moisture content in mining subsidence areas of Daliuta, Shenmu County, Shaanxi Province[J]. Journal of Geo-Information Science, 2010, 12(6): 753-760. (in Chinese with English abstract)
[11]   王强民,赵明.干旱半干旱矿区煤炭资源开采对水资源及植被生态影响综述[J].水资源与水工程学报,2017,28(3):77-81. DOI:10.11705/j.issn.1672-643X.2017.03.15
WANG Q M, ZHAO M. Effects of coal resources' exploitation on the water resource and vegetation in arid and semi-arid region[J]. Journal of Water Resources and Water Engineering, 2017, 28(3): 77-81. (in Chinese with English abstract)
doi: 10.11705/j.issn.1672-643X.2017.03.15
[12]   钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(4):973-984. DOI:10.13225/j.cnki.jccs.2019.0337
QIAN M G, XU J L. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society, 2019, 44(4): 973-984. (in Chinese with English abstract)
doi: 10.13225/j.cnki.jccs.2019.0337
[13]   范立民,向茂西,彭捷,等.西部生态脆弱矿区地下水对高强度采煤的响应[J].煤炭学报,2016,41(11):2672-2678. DOI:10.13225/j.cnki.jccs.2016.0243
FAN L M, XIANG M X, PENG J, et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society, 2016, 41(11): 2672-2678. (in Chinese with English abstract)
doi: 10.13225/j.cnki.jccs.2016.0243
[14]   胡海峰,廉旭刚,蔡音飞,等.山西黄土丘陵采煤沉陷区生态环境破坏与修复研究[J].煤炭科学技术,2020,48(4):70-79. DOI:10.13119/j.cnki.cst.2020.04.006
HU H F, LIAN X G, CAI Y F, et al. Study on ecological environment damage and restoration for coal mining-subsided area in loess hilly area of Shanxi Province[J]. Coal Science and Technology, 2020, 48(4): 70-79. (in Chinese with English abstract)
doi: 10.13119/j.cnki.cst.2020.04.006
[15]   郭文兵,白二虎,赵高博.高强度开采覆岩地表破坏及防控技术现状与进展[J].煤炭学报,2020,45(2):509-523. DOI:10.13225/j.cnki.jccs.YG19.1495
GUO W B, BAI E H, ZHAO G B. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining[J]. Journal of China Coal Society, 2020, 45(2): 509-523. (in Chinese with English abstract)
doi: 10.13225/j.cnki.jccs.YG19.1495
[16]   ILYAS M, NISAR M, KHAN N, et al. Drought tolerance strategies in plants: a mechanistic approach[J]. Journal of Plant Growth Regulation, 2021, 40(3): 926-944. DOI:10.1007/s00344-020-10174-5
doi: 10.1007/s00344-020-10174-5
[17]   YANG X Y, LU M Q, WANG Y F, et al. Response mechanism of plants to drought stress[J]. Horticulturae, 2021, 7(3): 50. DOI:10.3390/horticulturae7030050
doi: 10.3390/horticulturae7030050
[18]   JAFARI S, GARMDAREH S E H, AZADEGAN B. Effects of drought stress on morphological, physiological, and biochemical characteristics of stock plant (Matthiola incana L.)[J]. Scientia Horticulturae, 2019, 253: 128-133. DOI:10 .1016/j.scienta.2019.04.033
doi: 10
[19]   许爱云,曹兵,谢云.干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价[J].草业学报,2020,29(10):22-34. DOI:10.11686/cyxb2020114
XU A Y, CAO B, XIE Y. Physiological-ecological responses of twelve herbaceous plant species under drought stress and evaluation of their drought resistance when planted in coal producting basis in arid windy and sandy areas[J]. Acta Prataculturae Sinica, 2020, 29(10): 22-34. (in Chinese with English abstract)
doi: 10.11686/cyxb2020114
[20]   柴胜丰,唐健民,王满莲,等.干旱胁迫对金花茶幼苗光合生理特性的影响[J].西北植物学报,2015,35(2):322-328. DOI:10.7606/j.issn.1000-4025.2015.02.0322
CAI S F, TANG J M, WANG M L, et al. Photosynthetic and physiological characteristics of Camellia petelotii seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2): 322-328. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2015.02.0322
[21]   丁龙,赵慧敏,曾文静,等.五种西北旱区植物对干旱胁迫的生理响应[J].应用生态学报,2017,28(5):1455-1463. DOI:10.13287/j.1001-9332.201705.034
DING L, ZHAO H M, ZENG W J, et al. Physiological responses of five plants in northwest China arid area under drought stress[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1455-1463. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201705.034
[22]   李磊,贾志清,朱雅娟,等.我国干旱区植物抗旱机理研究进展[J].中国沙漠,2010,30(5):1053-1059.
LI L, JIA Z Q, ZHU Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China[J]. Journal of Desert Research, 2010, 30(5): 1053-1059. (in Chinese with English abstract)
[23]   马富举,李丹丹,蔡剑,等.干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J].应用生态学报,2012,23(3):724-730. DOI:10.13287/j.1001-9332.2012.0097
MA F J, LI D D, CAI J, et al. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 724-730. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.2012.0097
[24]   GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. DOI:10.1126/science.aaz761
doi: 10.1126/science.aaz761
[25]   廖荣伟,刘晶淼,安顺清,等.基于微根管技术的玉米根系生长监测[J].农业工程学报,2010,26(10):156-161. DOI:10.3969/j.issn.1002-6819.2010.10.026
LIAO R W, LIU J M, AN S Q, et al. Monitor of corn root growth in soil based on minirhizotron technique[J]. Transactions of the CSAE, 2010, 26(10): 156-161. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2010.10.026
[26]   刘英,雷少刚,程林森,等.采煤塌陷影响下土壤含水量变化对柠条气孔导度、蒸腾与光合作用速率的影响[J].生态学报,2018,38(9):81-89. DOI:10.5846/stxb201703160442
LIU Y, LEI S G, CHENG L S, et al. Effects of soil water content on stomatal conductance, transpiration, and photosynthetic rate of Caragana korshinskii under the influence of coal mining subsidence[J]. Acta Ecologica Sinica, 2018, 38(9): 81-89. (in Chinese with English abstract)
doi: 10.5846/stxb201703160442
[27]   LIU Y, LEI S G, CHEN X Y, et al. Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O-J-I-P chlorophyll a fluorescence analysis[J]. Photosynthetica, 2020, 58(5): 1178-1187. DOI:10.32615/ps.2020.072
doi: 10.32615/ps.2020.072
[28]   ZHANG R R, WANG Y H, LI T, et al. Effects of simulated drought stress on carotenoid contents and expression of related genes in carrot taproots[J]. Protoplasma, 2021, 258(2): 379-390. DOI:10.1007/s00709-020-01570-5
doi: 10.1007/s00709-020-01570-5
[29]   LASSOUANE N, AÏD F, LUTTS S. Water stress impact on young seedling growth of Acacia arabica [J]. Acta Physiologiae Plantarum, 2013, 35(7): 2157-2169. DOI:10.1007/s11738-013-1252-7
doi: 10.1007/s11738-013-1252-7
[30]   TOMINAGA J, INAFUKU S, COETZEE T, et al. Diurnal regulation of photosynthesis in Jatropha curcas under drought during summer in a semi-arid region[J]. Biomass and Bioenergy, 2014, 67: 279-287. DOI:10.1016/j.biombioe.2014.05.010
doi: 10.1016/j.biombioe.2014.05.010
[31]   RAGGIO J, PINTADO A, VIVAS M, et al. Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almeria, Spain: progressing towards a model to understand productivity[J]. Biodiversity and Conservation, 2014, 23(7): 1809-1826. DOI:10.1007/s10531-014-0692-8
doi: 10.1007/s10531-014-0692-8
[32]   王海珍,韩路,徐雅丽,等.不同温度下灰胡杨叶片气孔导度对光强响应的模型分析[J].生态环境学报,2015,24(5):741-748. DOI:10.16258/j.cnki.1674-5906.2015.05.003
WANG H Z, HAN L, XU Y L, et al. Model analysis of the stomatal conductance response to light in Populus pruinosa at different temperatures in the Taklimakan Desert[J]. Ecology and Environmental Sciences, 2015, 24(5): 741-748. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2015.05.003
[33]   SINGH R K, SINGH V K, RAGHAVENDRARAO S, et al. Expression of finger millet EcDehydrin7 in transgenic tobacco confers tolerance to drought stress[J]. Applied Biochemistry and Biotechnology, 2015, 177(1): 207-216. DOI:10.1007/s12010-015-1738-4
doi: 10.1007/s12010-015-1738-4
[34]   庄维兵,刘天宇,束晓春,等.植物体内花青素苷生物合成及呈色的分子调控机制[J].植物生理学报,2018,54(11):1630-1644. DOI:10.13592/j.cnki.ppj.2018.0231
ZHUANG W B, LIU T Y, SHU X C, et al. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants[J]. Plant Physiology Journal, 2018, 54(11): 1630-1644. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2018.0231
[35]   王龙飞.UV-B辐射及干旱胁迫对三种胡枝子叶片光合特性及花青素含量的影响[D].陕西,杨凌:西北农林科技大学,2013.
WANG L F. The interactive effects of drought and enhanced UV-B radiation on photosynthesis in three species in Lespedeza Michx[D]. Yangling, Shaanxi: Northwest A&F University, 2013. (in Chinese with English abstract)
[36]   LI Y C, LIN T C, MARTIN C E. Leaf anthocyanin, photosynthetic light-use efficiency, and ecophysiology of the South African succulent Anacampseros rufescens (Anacampserotaceae)‍[J]. South African Journal of Botany, 2015, 99: 122-128. DOI:10.1016/j.sajb.2015.04.001
doi: 10.1016/j.sajb.2015.04.001
[37]   GONG Z Z, XIONG L M, SHI H Z, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China: Life Sciences, 2020, 63(5): 635-674. DOI:10.1007/s11427-020-1683-x
doi: 10.1007/s11427-020-1683-x
[38]   ALI F, BANO A, FAZAL A. Recent methods of drought stress tolerance in plants[J]. Plant Growth Regulation, 2017, 82(3): 363-375. DOI:10.1007/s10725-017-0267-2
doi: 10.1007/s10725-017-0267-2
[39]   WANG X, ZHANG J, SONG J M, et al. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.)[J]. Plant Biology, 2020, 22(6): 1113-1122. DOI:10.1111/PLB.13143
doi: 10.1111/PLB.13143
[40]   黎祜琛,邱治军.树木抗旱性及抗旱造林技术研究综述[J].世界林业研究,2003,16(4):17-22. DOI:10.3969/j.issn.1001-4241.2003.04.004
LI H C, QIU Z J. A review of studies of drought resistance in tree species and drought resistant forestation technology[J]. World Forestry Research, 2003, 16(4): 17-22. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-4241.2003.04.004
[41]   HESSINI K, MARTÍNEZ J P, GANDOUR M, et al. Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora [J]. Environmental and Experimental Botany, 2009, 67(2): 312-319. DOI:10.1016/j.envexpbot.2009.06.010
doi: 10.1016/j.envexpbot.2009.06.010
[42]   HSIAO T C. Rapid changes in levels of polyribosomes in Zea mays in response to water stress[J]. Plant Physiology, 1970, 46(2): 281-285. DOI:10.1104/pp.46.2.281
doi: 10.1104/pp.46.2.281
[43]   BOYER J. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials[J]. Plant Physiology, 1970, 46(2): 233-235. DOI:10.1104/pp.46.2.233
doi: 10.1104/pp.46.2.233
[44]   刘奉觉,郑世锴.杨树水分生理研究[M].北京:北京农业大学出版社,1992.
LIU F J, ZHENG S K. Water Physiological Studies on Poplar[M]. Beijing: Beijing Agricultural University Press, 1992. (in Chinese)
[45]   CEULEMANS R, IMPENS I, LEMEUR R, et al. Water movement in the soil-poplar-atmosphere continuum. Ⅱ. Comparative study of transpiration regulation during water stress situations in four different poplar clones[J]. Oecologia Plantarum, 1978, 13: 139-146.
[46]   VERMA G, SRIVASTAVA D, TIWARI P, et al. ROS modulation in crop plants under drought stress[M]//Reactive Oxygen, Nitrogen and Sulfur Species in Plants. Washington, DC, USA: John Wiley & Sons Ltd., 2019: 311-336. DOI:10.1002/9781119468677.ch13
doi: 10.1002/9781119468677.ch13
[47]   FOYER C H, NOCTOR G. Managing the cellular redox hub in photosynthetic organisms[J]. Plant, Cell and Environment, 2012, 35(2): 199-201. DOI:10.1111/j.1365-3040.2011.02453.x
doi: 10.1111/j.1365-3040.2011.02453.x
[48]   OSAKABE Y, OSAKABE K, SHINOZAKI K, et al. Response of plants to water stress[J]. Frontiers in Plant Science, 2014, 5: 86. DOI:10.3389/fpls.2014.00086
doi: 10.3389/fpls.2014.00086
[49]   NADEEM M, LI J J, YAHYA M, et al. Research progress and perspective on drought stress in legumes: a review[J]. International Journal of Molecular Sciences, 2019, 20(10): 2541. DOI:10.3390/ijms20102541
doi: 10.3390/ijms20102541
[50]   李钰洁.山西矿区紫花苜蓿(单/混种)对干旱胁迫的生态适应性研究[D].太原:山西大学,2015.
LI Y J. Ecological adaptability of mono-/mixed cultured Medicago sativa L. under drought stress in Shanxi mining areas[D]. Taiyuan: Shanxi University, 2015. (in Chinese with English abstract)
[51]   PALLIOTTI A, TOMBESI S, FRIONI T, et al. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses[J]. Journal of Plant Physiology, 2015, 185: 84-92. DOI:10.1016/j.jplph.2015.07.007
doi: 10.1016/j.jplph.2015.07.007
[52]   BROSSA R, PINTÓ-MARIJUAN M, FRANCISCO R, et al. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery[J]. Planta, 2015, 241(4): 803-822. DOI:10.1007/s00425-014-2221-0
doi: 10.1007/s00425-014-2221-0
[53]   ADNAN M. Application of selenium a useful way to mitigate drought stress: a review[J]. Open Access Journal of Biogeneric Science and Research, 2020, 3(1): 1-4. DOI:10.46718/JBGSR.2020.03.000064
doi: 10.46718/JBGSR.2020.03.000064
[54]   NAWAZ F, ASHRAF M Y, AHMAD R, et al. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions[J]. Food Chemistry, 2015, 175: 350-357. DOI:10.1016/j.foodchem.2014.11.147
doi: 10.1016/j.foodchem.2014.11.147
[55]   兰玉婷,王双蕾,李征珍,等.沙冬青属植物响应非生物胁迫的蛋白质组学研究进展[J].生物技术通报,2019,35(1):112-119. DOI:10.13560/j.cnki.biotech.bull.1985.2018-0780
LAN Y T, WANG S L, LI Z Z, et al. Research advances in proteomics of Ammopiptanthus in responses to abiotic stresses[J]. Biotechnology Bulletin, 2019, 35(1): 112-119. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0780
[56]   李洁.干旱胁迫对青稞幼苗可溶性蛋白的影响[J].江苏农业科学,2015,43(12):124-126. DOI:10.15889/j.issn.1002-1302.2015.12.038
LI J. Effects of drought stress on soluble protein of barley seedlings[J]. Jiangsu Agricultural Sciences, 2015, 43(12): 124-126. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2015.12.038
[1] Yang WU,Xiaohua YAO,Zhengsheng HE,Chun’e WANG,Huiwen ZHOU,Sicheng YE,Yingpei SONG,Fan WANG,Xian ZHANG,Yinxiang GAO. Research progress of light effects on photosynthesis, growth and development of oil-tea (Camellia oleifera)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 147-157.
[2] Fumei XIN,Yuting WANG,Shengmao LI, Danzengluobu, Pubuciren. Effects of different temperatures on photosynthesis and rooting of Cupressus gigantea seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 102-108.
[3] WANG Yihang, ZHAO Luyao, WANG Guoming, ZHU Aiyi. Physiological responses in Neolitsea sericea seedlings to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 543-551.
[4] XIN Fumei, JIA Liming, YANG Xiaolin, ZANG Jiancheng. Effects of drought stress on characteristics of water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 617-.
[5] . Plasticity responses of two sympodial bamboo species to nitrogen levels[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 608-613.
[6] ZHANG Kai‐ming,LI Yong‐hua,KONG De‐zheng,HE Song‐lin. Photo‐physiological mechanisms of tolerant difference to high temperature between two varieties of Celosia cristata[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(5): 501-508.