Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (6): 759-766    DOI: 10.3785/j.issn.1008-9209.2020.03.201
Agricultural engineering     
Effects of boat-type parameters of boat-type tractor on working resistance and subsidence depth
Yongwei WANG1(),Zhuoliang HE1,2,Jun WANG1()
1.School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
2.Department of Mechanical Engineering, University of Hong Kong, Hong Kong 999077, China
Download: HTML   HTML (   PDF(2099KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the effects of structural and working parameters on the working resistance and subsidence depth of boat-type tractor in paddy field, simplified prototypes of boat-type tractors with testing system were developed. Ground ratio pressure, working speed, curvature radius of board, ground contact angle and depth of surface water of paddy soil were taken as factors, and working resistance and subsidence depth were taken as evaluation indexes. The experiments were conducted through the paddy soil platform which was filled with filtered silt loam. Results showed that all the factors had significant effects on the two evaluation indexes. The working resistance and subsidence depth increased monotonously with the increase of ground ratio pressure within 250-350 kg/m2. However, when the ground ratio pressure was beyond 300 kg/m2, the increase of two evaluation indexes was much slower. When working speed, curvature radius of board and ground contact angle were within 0.2-1.0 m/s, 300-500 mm and 25.0°-35.0°, respectively, the working resistance and subsidence depth increased after a slight decrease on the whole. The working resistance and subsidence depth reached the minimum values at the working speed of 0.6 and 0.8 m/s, respectively; and subsidence depth and working resistance reached the minimum values with ground contact angle of 27.5° and 30.0°, respectively. When the depth of surface water of paddy soil increased within 10-50 mm, the subsidence depth decreased monotonously, while the working resistance increased after a slight decrease on the whole. The working resistance reached the minimum value with the depth of surface water of 20 mm. In conclusion, the optimum working and structural parameters for boat-type tractors in paddy field are 0.6-0.8 m/s for working speed, 350-450 mm for curvature radius of board, 27.5°-30.0° for ground contact angle, and 20-40 mm for depth of surface water. The result can provide references for the design and operation of boat-type tractor in paddy field.



Key wordsboat-type tractor      ship hull model      boat-type parameters      working resistance      subsidence depth     
Received: 20 March 2020      Published: 31 December 2020
CLC:  S 219  
Corresponding Authors: Jun WANG     E-mail: wywzju@zju.edu.cn;jwang@zju.edu.cn
Cite this article:

Yongwei WANG,Zhuoliang HE,Jun WANG. Effects of boat-type parameters of boat-type tractor on working resistance and subsidence depth. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 759-766.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.03.201     OR     http://www.zjujournals.com/agr/Y2020/V46/I6/759


船式拖拉机船型参数对滑行阻力与下陷深度的影响

为获得水田船式拖拉机船型参数对滑行阻力和下陷深度的影响规律,设计了水田船式拖拉机船体模型滑行阻力试验台。以船型参数接地比压、滑行速度、首舷曲率半径、接地角和水田土壤表层水深为试验因素,以船体模型在水田土壤中的滑行阻力、下陷深度为试验指标,以粉砂壤土为水田土壤介质,研究了船型参数、土壤表层水深对试验指标的影响规律。结果表明:接地比压、滑行速度、首舷曲率半径、接地角和水田土壤表层水深对船体模型的滑行阻力、下陷深度均有明显影响。在接地比压为250~350 kg/m2时,滑行阻力、下陷深度随着接地比压的增加均单调递增,但当接地比压大于300 kg/m2时,增加幅度降低;当滑行速度为0.2~1.0 m/s、首舷曲率半径为300~500 mm、接地角为25.0°~35.0°时,滑行阻力、下陷深度总体上随各参数增加均呈先下降后上升的趋势;当滑行速度分别为0.6和0.8 m/s时,滑行阻力、下陷深度分别达到最小值;接地角为27.5°时下陷深度最小,接地角为30.0°时滑行阻力最小;水田土壤表层水深在10~50 mm之间时,随着表层水深增加,下陷深度单调递减,滑行阻力总体上呈先减少后增加的趋势,且表层水深为20 mm时滑行阻力最小。综上所述,船式拖拉机船体较优的船型参数为滑行速度0.6~0.8 m/s、首舷曲率半径350~450 mm、接地角27.5°~30.0°,水田作业时土壤表层水深的较佳范围为 20~40 mm。以上研究结果可为水田船式拖拉机的设计和运行提供参考。


关键词: 船式拖拉机,  船体模型,  船型参数,  滑行阻力,  下陷深度 
Fig. 1 Schematic structure of the test-bed for working resistance experiment of boat-type tractor1: Soil bin; 2: Water level controlling pipe; 3: Ship hull model; 4: Computer; 5: Data collector; 6: Adjustable loadings; 7: Force sensor; 8: Reel; 9: Motor; 10: Frequency converter; 11: Drain pipe and ball valve.
Fig. 2 Model structure of boat-type tractor1: Board; 2: Bow; 3: Starboard; 4: Stern; 5: Bottom of the ship model; 6: Port. R: Curvature radius of board, mm; α: Angle between board and the ground, (°); W1: Width of the ship hull model, mm; L1: Length of the ship hull model, mm; H1: Height of the ship hull model, mm.

水平

Level

试验因素 Experimental factor

接地比压

Ground ratio

pressure/(kg/m2)

滑行速度

Working speed/(m/s)

表层水深

Depth of surface water/mm

首舷曲率半径

Curvature radius of

board/mm

接地角

Ground contact

angle/(°)

12500.21030025.0
22750.42035027.5
33000.63040030.0
43250.84045032.5
53501.05050035.0
Table 1 Experimental factors and levels
Fig. 3 Testing site
Fig. 4 Effects of ground ratio pressure on working resistance and subsidence depth
Fig. 5 Effects of working speed on working resistance and subsidence depth
Fig. 6 Effects of curvature radius of board on working resistance and subsidence depth
Fig. 7 Effects of ground contact angle on working resistance and subsidence depth
Fig. 8 Effects of depth of surface water on working resistance and subsidence depth
[1]   国家统计局.2019中国统计年鉴.北京:中国统计出版社,2019.
National Bureau of Statistics of China. 2019 China Statistical Yearbook. Beijing: China Statistics Press, 2019. (in Chinese)
[2]   诸葛镇,蒋崇贤.船式拖拉机的发展及其性能研究和结构分析.农业机械学报,1989,20(2):46-52.
ZHUGE Z, JIANG C X. The development, performance test and structure analysis of boat-tractor. Transactions of the Chinese Society for Agricultural Machinery, 1989,20(2):46-52. (in Chinese with English abstract)
[3]   杨晖,陈源,刘明勇.船式拖拉机船壳减阻综合分析.中国农机化学报,2019,40(6):129-133, 151. DOI:10.13733/j.jcam.issn.2095-5553.2019.06.25
YANG H, CHEN Y, LIU M Y. Comprehensive analysis of drag reduction of ship hull of ship type tractor. Journal of Chinese Agricultural Mechanization, 2019,40(6):129-133, 151. (in Chinese with English abstract)
doi: 10.13733/j.jcam.issn.2095-5553.2019.06.25
[4]   张超,孙勇,周明刚,等.基于SPH法的船式拖拉机中轮单轮叶驱支性能研究.农机化研究,2019,41(9):227-232. DOI:10.13427/j.cnki.njyi.2019.09.041
ZHANG C, SUN Y, ZHOU M G, et al. Driving performance of the single lug for boat-tractor’s driving wheel based on SHP. Journal of Agricultural Mechanization Research, 2019,41(9):227-232. (in Chinese with English abstract)
doi: 10
[5]   周明刚,张露,陈源,等.基于灵敏度分析的船式拖拉机机架结构优化设计.农业工程学报,2016,32(12):54-60. DOI:10.11975/j.issn.1002-6819.2016.12.008
ZHOU M G, ZHANG L, CHEN Y, et al. Structural optimization for rack of boat-type tractor based on sensitivity analysis. Transactions of the CSAE, 2016,32(12):54-60. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2016.12.008
[6]   庄金灿.船式拖拉机的开发与应用.农业装备与车辆工程,2002,40(1):9-11.
ZHUANG J C. The research and applications of the boat-type tractor. Agricultural Equipment and Vehicle Engineering, 2002,40(1):9-11. (in Chinese with English abstract)
[7]   龙俞文.船式拖拉机行走机构对牵引性能影响的研究.南昌:江西农业大学,2013:4-6.
LONG Y W. Research on the issue between walking mechanism of the boat-tractor and the influence of traction performance. Nanchang: Jiangxi Agricultural University, 2013:4-6. (in Chinese with English abstract)
[8]   翟力欣.犁体结构与工作参数对流变型土壤耕作阻力的影响研究.南京:南京农业大学,2011.
ZHAI L X. Study on the effects of plough’s working and structure parameters on its resistance under rheological soil conditions. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract)
[9]   侯占峰,鲁植雄,黄学勤,等.水田土壤流变机理研究现状与展望.农机化研究,2007,29(1):43-44. DOI:10.13427/j.cnki.
njyi.2007.01.014
doi: 10.13427/j.cnki
[9]   HOU Z F, LU Z X, HUANG X Q, et al. The actuality and prospect on paddy field of rheology mechanism. Journal of Agricultural Mechanization Research, 2007,29(1):43-44. (in Chinese with English abstract)
doi: 10.13427/j.cnki
[10]   诸葛镇.机耕船船体的滑行下陷和滑行阻力.农业机械学报,1984,15(2):1-10.
ZHUGE Z. The slipping sinkage and resistance of the body of BTTMS. Transactions of the Chinese Society for Agricultural Machinery, 1984,15(2):1-10. (in Chinese with English abstract)
[11]   区颖刚,邵耀坚.船式拖拉机船体行驶阻力的研究.华南农学院学报,1984,5(1):1-10.
OU Y G, SHAO Y J. A study on the motion resistance of the floating body of boat-type tractor. Journal of Southern China Agricultural College, 1984,5(1):1-10. (in Chinese with English abstract)
[12]   周明刚,陈龙,刘明勇,等.船式拖拉机底板非光滑表面减阻机理研究.农机化研究,2019,41(7):258-263. DOI:10.13427/j.cnki.njyi.2019.07.049
ZHOU M G, CHEN L, LIU M Y, et al. Research on drag reduction mechanism of non-smooth surface for bottom plate of the boat-tractor. Journal of Agricultural Mechanization Research, 2019,41(7):258-263. (in Chinese with English abstract)
doi: 10.13427/j.cnki.njyi.2019.07.049
[13]   李振镛,吴卫平.减少船体滑行阻力的探讨.农业机械学报,1988,19(1):7-15.
LI Z Y, WU W P. Researching for reducing the sliding resistance of hull bottom. Transactions of the Chinese Society for Agricultural Machinery, 1988,19(1):7-15. (in Chinese with English abstract)
[14]   李振镛,李屹,丁汉章.船式机械船底“水垫”的形成机理.农业机械学报,1994,25(4):15-20.
LI Z Y, LI Y, DING H Z. The theory of forming water-pad under the bottom of boat-type machine. Transactions of the Chinese Society for Agricultural Machinery, 1994,25(4):15-20. (in Chinese with English abstract)
[15]   李振镛,李劲,李屹,等.“水垫”形成原理在船拖上的应用和试验研究.农业机械学报,1995,26(4):41-45.
LI Z Y, LI J, LI Y, et al. Experimental research on applying the theory of forming water pad to the boat-type tractor. Transactions of the Chinese Society for Agricultural Machinery, 1995,26(4):41-45. (in Chinese with English abstract)
[16]   劳勤业,李屹,王均捷,等.船拖船体完全泥水膜润滑滑行阻力理论分析.浙江农业大学学报,1990,16(2):15-18.
LAO Q Y, LI Y, WANG J J, et al. The theoretical analysis of slipping resistance of boat-type tractor’s body under the condition of full lubrication of slurry-film. Acta Agriculturae Universitatis Zhejiangenis, 1990,16(2):15-18. (in Chinese with English abstract)
[17]   胡杭湘,李振镛,胡杭英.加装前横挡板对秧船滑行性能影响初探.农机化研究,1993,10(3):25-29.
HU H X, LI Z Y, HU H Y. Study on the influence of the sliding performance of boat-type tillage machine after retrofitting front transverse baffle. Journal of Agricultural Mechanization Research, 1993,10(3):25-29. (in Chinese)
[18]   诸葛镇,乔秀娟.机耕船船体参数的试验研究.农业机械学报,1985,16(3):17-28.
ZHUGE Z, QIAO X J. Experimental research on parameters of the body of BTTM. Transactions of the Chinese Society for Agricultural Machinery, 1985,16(3):17-28. (in Chinese with English abstract)
[19]   诸葛镇.机耕船重心位置和船尾长度的合理选择.农业机械学报,1986,17(3):1-16.
ZHUGE Z. Research selection of the position of the gravity centre and the length of the stern of BTTM. Transactions of the Chinese Society for Agricultural Machinery, 1986,17(3):1-16. (in Chinese with English abstract)
[20]   何焯亮,郝一枫,王永维,等.船形拖拉机船体模型行驶阻力检测试验装置及其方法:CN201810306852.1. 2019-11-15.
HE Z L, HAO Y F, WANG Y W, et al. The test device and its instructions for testing the driving resistance of the hull model of boat-type tractor: CN201810306852.1. 2019-11-15. (in Chinese)
[21]   何焯亮.水田船式拖拉机船体结构与工作参数优化试验.杭州:浙江大学,2018.
HE Z L. Experiment of structures and working parameters optimization for paddy field boat-type tractor. Hangzhou: Zhejiang University, 2018. (in Chinese with English abstract)
[22]   张甘霖,龚子同.土壤调查实验室分析方法.北京:科学出版社,2012:1-26.
ZHANG G L, GONG Z T. Laboratory Analysis Methods for Soil Survey. Beijing: Science Press, 2012:1-26. (in Chinese)
[23]   孙一源.农业土壤力学.北京:中国农业出版社,1985.
SUN Y Y. Agricultural Soil Mechanics. Beijing: China Agriculture Press, 1985. (in Chinese)
[24]   劳勤业,李屹,李振镛,等.减小耕整机滑行阻力的研究.浙江农业大学学报,1992,18(2):90-95.
LAO Q Y, LI Y, LI Z Y, et al. Study on reducing the slipping resistance of tillage machine. Acta Agriculturae Universitatis Zhejiangensis, 1992,18(2):90-95. (in Chinese with English abstract)
[25]   赵家丰,汪伟,孙中兴,等.均质土壤承压下陷模型改进及验证.农业工程学报,2016,32(21):60-66. DOI:10.11975/j.issn.1002-6819.2016.21.008
ZHAO J F, WANG W, SUN Z X, et al. Improvement and verification of pressure-sinkage model in homogeneous soil. Transactions of the CSAE, 2016,32(21):60-66. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2016.21.008
[26]   李振镛,劳勤业,魏亚璋,等.降低船拖滑行阻力及船体比压的研究.农业机械学报,1991,22(2):15-21.
LI Z Y, LAO Q Y, WEI Y Z, et al. Research on reduce of sliding resistance of boat-type tractor and its specific pressure. Transactions of the Chinese Society for Agricultural Machinery, 1991,22(2):15-21. (in Chinese with English abstract)
No related articles found!