Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (4): 507-515    DOI: 10.3785/j.issn.1008-9209.2023.03.291
Research articles     
Breeding and utilization of recessive genic male sterile line LY31AB in Brassica napus L.
Mingchao XU1(),Qian HUANG2,Kangni ZHANG2,Xudong ZOU1,Xingfan CHEN1,Hong LU1,Yanhui WANG1(),Zhi ZHANG1()
1.Leshan Academy of Agricultural Sciences, Leshan 614000, Sichuan, China
2.Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(2702KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to make full use of the advantages of genic male sterility (GMS), the commercial rapeseed ‘Q1012’ of Brassica napus L. was used as the source to select the double-low and high-quality recessive GMS line LY31AB of B. napus by the pedigree breeding method. LY31AB fertility, resistance, combining ability and other characteristics were analyzed and its heterosis was utilized. The results indicated that the sterility of LY31AB was genetically stable, which was controlled by two pairs of recessive overlapping genes, and showed good resistance to sclerotiniadisease and lodging resistance in the field. LY31AB had high combining ability, wide recovery sources and strong heterosis, and most of its combinations showed obvious heterosis. Four new double-low and high-quality rape varieties, Leyou 8, Deleyou 1632, Wanjiayou 520 and Leyou 7, which were bred using LY31AB and registered, also showed good resistance tosclerotiniadisease and lodging resistance, and were widely in promotion and application. To sum up, LY31AB is a sterile line with clear pedigree, stable genetic characters, good quality, good fertility, good resistance, high combining ability, wide recovery sources and good heterosis utilization value, and has broad application prospects.



Key wordsgenic male sterile line      breeding      fertility      resistance      combining ability      heterosis utilization     
Received: 29 March 2023      Published: 25 August 2023
CLC:  S565.4  
Corresponding Authors: Yanhui WANG,Zhi ZHANG     E-mail: 1048515670@qq.com;103434183@qq.com;85943012@qq.com
Cite this article:

Mingchao XU,Qian HUANG,Kangni ZHANG,Xudong ZOU,Xingfan CHEN,Hong LU,Yanhui WANG,Zhi ZHANG. Breeding and utilization of recessive genic male sterile line LY31AB in Brassica napus L.. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 507-515.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.03.291     OR     https://www.zjujournals.com/agr/Y2023/V49/I4/507


甘蓝型油菜隐性细胞核雄性不育系LY31AB的选育及利用

为充分利用细胞核雄性不育的优势,以甘蓝型油菜‘Q1012’商品油菜籽为来源,用系谱选育法选育出双低优质甘蓝型油菜隐性细胞核雄性不育系LY31AB,分析其育性、抗性、配合力等特点,并进行杂种优势利用。结果表明:LY31AB不育性遗传稳定,受2对隐性重叠基因控制,且在田间表现出良好的菌核病抗性和抗倒性;LY31AB配合力高、恢复源广、杂种优势强,其所配组合大多表现出明显的杂种优势;利用LY31AB育成并登记的乐油8号、得乐油1632、万家油520、乐油7号4个双低优质油菜新品种也均表现出菌核病抗性和良好的抗倒性,已被大面积推广应用。综上所述,LY31AB是一个选育系谱清楚、遗传性状稳定、品质优、丰产性好、抗性好、配合力高、恢复源广且具有良好杂种优势利用价值的不育系,有着广阔的应用前景。


关键词: 细胞核雄性不育系,  选育,  育性,  抗性,  配合力,  杂种优势利用 

父本

Male parent

母本 Female parent
LY31AB40-1AB308ABN3A
LY07LY31AB×LY0740-1AB×LY07308AB×LY07N3A×LY07
L0118LY31AB×L011840-1AB×L0118308AB×L0118N3A×L0118
L0121LY31AB×L012140-1AB×L0121308AB×L0121N3A×L0121
W306-3LY31AB×W306-340-1AB×W306-3308AB×W306-3N3A×W306-3
08C-4LY31AB×08C-440-1AB×08C-4308AB×08C-4N3A×08C-4
Table 1 Design of 20 combinations of combining abilities based on incomplete diallel cross (NC Ⅱ)
Fig. 1 Morphology of LY31AB flower organsA. Alabastrum of sterile plant; B. Alabastrum of fertile plant; C. Flower of sterile plant; D. Flower of fertile plant.
Fig. 2 Morphology of LY31AB mature plants at a cultivation density of 6 000 plants/667 m2A. Sterile plant; B. Fertile plant.

不育系

Sterile line

株高

Plant

height/cm

一次有效分枝数

Number of effective

Branches at one time

单株有效角果数

Number of effective

pods per plant

每角粒数

Number of

seeds per pod

千粒质量

Thousand-seed

mass/g

单株产量Yield per

plant/g

LY31AB19811.056017.04.0534
L7AB19010.052214.93.8631
156AB1869.048617.83.6030
S45AB1808.450015.24.4030
Table 2 Performance of main agronomic traits in LY31AB

调查时间

Investigation

time

调查株数

Number of

investigation

plants

不育株数

Number of

sterile plants

可育株数

Number of

fertile plants

不育株率

Percentage of

sterile plants/%

不育株数∶可育株数

Number of sterile

plants∶Number

of fertile plants

χ2

χ2 value

(1∶1)

p

p-value

不育株套袋

自交结实株数

Number of selfing

fruits of bagged

sterile plants

2013年3月

March 2013

119576247.900.92∶10.2100.6470

2014年3月

March 2014

124646051.611.07∶10.1290.7190

2015年3月

March 2015

117605751.281.05∶10.0770.7830
Table 3 Fertility performance of LY31AB at flowering stage from 2013 to 2015

组合

Cross

F1F2

总株数

Total

number

of plants

可育株数

Number

of fertile

plants

不育株数

Number

of sterile

plants

总株数

Total

number

of plants

可育株数

Number

of fertile

plants

不育株数

Number

of sterile

plants

可育株数∶

不育株数

Number of fertile

plants∶Number of

sterile plants

χ2检验 χ2 test

期望比例

Expected

proportion

χ2

χ2 value

p

p-value

LY31AB×L100842420253199543.68∶13∶11.8040.179
LY31AB×LY0746460226178483.71∶13∶11.7050.192
LY31AB×101B38380217167503.34∶13∶10.4440.202
LY31AB×L0123515103533282513.12∶115∶10.4170.518
Table 4 Fertility status of hybrid offsprings between LY31AB and four inbred lines

年份

Year

调查株数

Number of investigation plants

田间菌核病发生情况

Plants infected by Sclerotinia sclerotiorum in the field

抗倒性

Lodging resistance

感病株数

Number of infected plants

发病率

Infection rate/%

发病指数

Disease index

201319831.520.51直立 Up-right
201421662.780.93直立 Up-right
201520752.420.60直立 Up-right
Table 5 Resistance performance of LY31AB in the field

品种

Variety

主要农艺性状

Main agronomic trait

第一年度产量表现

First-year yield performance

第二年度产量表现

Second-year yield performance

抗倒性

Lodging resistance

株高

Plant

height/cm

有效分枝数

Number of effective

branches

单株有效角果数

Number of effectivepods per plant

每角粒数

Number of

seeds per pod

千粒质量

Thousand-seed

mass/g

平均产量

Average yield/

(kg/667 m2)

较对照增产幅度

Increase in yield

compared with

the control/%

平均产量

Average yield/

(kg/667 m2)

较对照增产幅度

Increase in yield

compared with

the control/%

乐油8号

Leyou 8

206.007.8418.914.904.39150.663.95170.838.36中等 Medium

得乐油1632

Deleyou 1632

222.008.9503.417.103.52188.6210.44210.9012.70强 Strong

万家油520

Wanjiayou 520

188.625.5300.117.894.31180.6210.33168.308.17强 Strong

乐油7号

Leyou 7

216.108.3380.819.903.89187.425.80195.805.50强 Strong
Table 6 Performance of the varieties bred from LY31AB in the Sichuan provincial joint experiment of new B. napus varieties

品种

Variety

品质检测

Quality testing

第一年度抗性鉴定

First-year resistance identification

第二年度抗性鉴定

Second-year resistance identification

w(芥酸)

Erucic acid

content/%

mB(硫苷)

Glucosinolate

content/(μmol/g)

含油量

Oil

content/%

菌核病

Sclerotinia disease

病毒病

Viral disease

菌核病

Sclerotinia disease

病毒病

Viral disease

乐油8号

Leyou 8

0.003 319.9944.46

低抗

Low resistance

Susceptibility

低抗

Low resistance

Susceptibility

得乐油1632

Deleyou 1632

0.003 321.1748.53

低抗

Low resistance

Susceptibility

低抗

Low resistance

Susceptibility

万家油520

Wanjiayou 520

0.062 822.7549.06

低抗

Low resistance

Resistance

中抗

Medium resistance

Resistance

乐油7号

Leyou 7

0.003 319.5646.83

低抗

Low resistance

中感

Moderate susceptibility

低抗

Low resistance

Resistance

Table 7 Quality testing and resistance identification results of the varieties bred from LY31AB
[1]   朱吉风,周熙荣,张俊英.甘蓝型油菜显性核不育遗传研究及育种利用[J].分子植物育种,2021,19(22):7556-7560. DOI:10.13271/j.mpb.019.007556
ZHU J F, ZHOU X R, ZHANG J Y. Genetics and breeding of dominant genic male sterility in rapeseed[J]. Molecular Plant Breeding, 2021, 19(22): 7556-7560. (in Chinese with English abstract)
doi: 10.13271/j.mpb.019.007556
[2]   易斌,涂金星,傅廷栋.甘蓝型油菜隐性细胞核雄性不育的研究及利用[J].中国科学(生命科学),2014,44(8):752-757. DOI:10.1360/052014-96
YI B, TU J X, FU T D. Recessive genic male sterility in Brassica napus and its application[J]. Scientia Sinica Vitae, 2014, 44(8): 752-757. (in Chinese with English abstract)
doi: 10.1360/052014-96
[3]   江莹芬,吴新杰,费维新,等.油菜隐性细胞核雄性不育的研究进展[J].作物杂志,2018(2):11-16. DOI:10.16035/j.issn.1001-7283.2018.02.003
JIANG Y F, WU X J, FEI W X, et al. Research progress on recessive genic male sterility of rapeseed[J]. Crops, 2018(2): 11-16. (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2018.02.003
[4]   MARIANI C, DE BEUCKELEER M, TRUETNER J, et al. Induction of male sterility in plants by a chimaeric ribonuclease gene[J]. Nature, 1990, 347(6295): 737-741. DOI: 10.1038/347737a0
doi: 10.1038/347737a0
[5]   MARIANI C, GOSSELE V, DE BEUCKELEER M, et al. A chimeric ribonuclease-inhibitor gene restores fertility to male sterile plants[J]. Nature, 1992, 357(6377): 384-387. DOI: 10.1038/357384a0
doi: 10.1038/357384a0
[6]   易斌.甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆[D].湖北,武汉:华中农业大学,2008.
YI B. Fine mapping and cloning of recessive genic male sterile gene Bnms1 in Brassica napus [D]. Wuhan, Hubei: Huazhong Agricultural University, 2008. (in Chinese with English abstract)
[7]   陈凤祥,胡宝成,李成,等.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传[J].作物学报,1998,24(4):431-438.
CHEN F X, HU B C, LI C, et al. Genetic studies on GMS in Brassica napus L.Ⅰ. Inheritance of recessive GMS line 9012A[J]. Acta Agronomica Sinica, 1998, 24(4): 431-438. (in Chinese with English abstract)
[8]   方春华,鲍周明.油菜品种对油菜菌核病的田间抗性评价[J].农业灾害研究,2014,4(11):8-10. DOI:10.19383/j.cnki.nyzhyj.2014.11.004
FANG C H, BAO Z M. Field resistance evaluation of rapeseed varieties against Sclerotinia sclerotiorum [J]. Journal of Agricultural Catastrophology, 2014, 4(11): 8-10. (in Chinese with English abstract)
doi: 10.19383/j.cnki.nyzhyj.2014.11.004
[9]   刘唐兴,官春云.油菜倒伏指数和茎秆生化成分及农艺性状的灰色关联分析[J].中国油料作物学报,2008,30(2):152-156. DOI:10.3321/j.issn:1007-9084.2008.02.004
LIU T X, GUAN C Y. Grey relational analysis between lodging index and biochemistry components of stem, agronomic characteristics in rapeseed (Brassica napus L.)[J]. Chinese Journal of Oil Crop Sciences, 2008, 30(2): 152-156. (in Chinese with English abstract)
doi: 10.3321/j.issn:1007-9084.2008.02.004
[10]   韩亚丽,林春晶,赵丽梅,等.作物杂种优势预测研究进展[J].东北农业科学,2020,45(3):30-34. DOI:10.16423/j.cnki.1003-8701.2020.03.007
HAN Y L, LIN C J, ZHAO L M, et al. Research progress in prediction of crop heterosis[J]. Journal of Northeast Agricul-tural Sciences, 2020, 45(3): 30-34. (in Chinese with English abstract)
doi: 10.16423/j.cnki.1003-8701.2020.03.007
[11]   黄远樟,刘来福.作物数量遗传学基础.六、配合力:不完全双列杂交[J].遗传,1980,2(2):43-46.
HUANG Y Z, LIU L F. The basis of quantitative genetics in crops. Ⅵ. Combining ability: incomplete diallel cross[J]. Hereditas, 1980, 2(2): 43-46. (in Chinese )
[12]   潘涛,曾凡亚,吴书惠,等.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究[J].中国油料,1988(3):5-8.
PAN T, ZENG F Y, WU S H, et al. A study on the breeding and application GMS line of low erucic acid in rapeseed (B. napus)[J]. Oil Crops of China, 1988(3): 5-8. (in Chinese with English abstract)
[13]   潘涛,赵云.甘蓝型双低油菜雄性核不育两用系的选育研究[J].作物研究,1990,4(3):47-49.
PAN T, ZHAO Y. A study on the breeding of double-low GMS line in rape (B. napus L.)[J]. Crop Research, 1990, 4(3): 47-49. (in Chinese with English abstract)
[14]   李树林,周志疆,周熙荣.甘蓝型油菜隐性核不育系S45AB的遗传[J].上海农业学报,1993,9(4):1-7.
LI S L, ZHOU Z J, ZHOU X R. Inheritance of recessive genic male sterile line ‘S45AB’ of rape (Brassica napus L.)[J]. Acta Agriculturae Shanghai, 1993, 9(4): 1-7. (in Chinese with English abstract)
[15]   潘涛,赵云,王茂林.甘蓝型油菜细胞核雄性不育系‘79.7’的遗传及应用研究[J].四川大学学报(自然科学版),1993,30(3):384-391.
PAN T, ZHAO Y, WANG M L. Studies on inheritance and utilization of the rapeseed GMS ‘79.7’ (B. napus)[J]. Journal of Sichuan University (Natural Science Edition), 1993, 30(3): 384-391. (in Chinese with English abstract)
[16]   YI B, CHEN Y N, LEI S L, et al. Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L.[J]. Theoretical and Applied Genetics, 2006, 113(4): 643-650. DOI: 10.1007/s00122-006-0328-9
doi: 10.1007/s00122-006-0328-9
[17]   LEI S L, YAO X Q, YI B, et al. Towards map-based cloning: fine mapping of a recessive genie male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences[J]. Theoretical and Applied Genetics, 2007, 115(5): 643-651. DOI: 10.1007/s00122-007-0594-1
doi: 10.1007/s00122-007-0594-1
[18]   张晓梅.新型早熟甘蓝型春油菜雄性不育恢复系遗传成分及配合力研究[D].青海,西宁:青海大学,2011.
ZHANG X M. Study on genetic components and combining ability of prematured spring rapeseed CMS restorer lines (Brassica napus L.)[D]. Xining, Qinghai: Qinghai University, 2011. (in Chinese with English abstract)
[19]   蒋俊,蒲晓斌,张锦芳,等.甘蓝型油菜JA胞质不育系主要农艺性状配合力与遗传力分析[J].西南农业学报,2013,26(2):423-427. DOI:10.16213/j.cnki.scjas.2013.02.033
JIANG J, PU X B, ZHANG J F, et al. Analysis on combining ability and heritability for JA CMS main agronomy characters of Brassica napus L.[J]. Southwest China Journal of Agricul-tural Sciences, 2013, 26(2): 423-427. (in Chinese with English abstract)
doi: 10.16213/j.cnki.scjas.2013.02.033
[20]   张毅,黄贺,程勇,等.甘蓝型油菜萌发期低温耐性相关性状的配合力、遗传效应及杂种优势分析[J].中国油料作物学报,2022,44(1):168-176. DOI:10.19802/j.issn.1007-9084.2020259
ZHANG Y, HUANG H, CHENG Y, et al. Analysis on combining ability, genetic effects and heterosis of germination-related traits under low temperature stress in Brassica napus L.[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 168-176. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2020259
[21]   李施蒙,杨广环,尼玛次仁,等.13份油菜骨干亲本产量和品质性状配合力分析[J].广东农业科学,2022,49(7):8-15. DOI:10.16768/j.issn.1004-874X.2022.07.002
LI S M, YANG G H, NIMACIREN, et al. Analysis on combining ability of yield and quality characters of 13 foundation parents of Brassica napus [J]. Guangdong Agricul-tural Sciences, 2022, 49(7): 8-15. (in Chinese with English abstract)
doi: 10.16768/j.issn.1004-874X.2022.07.002
[1] Attached Fig. S1 and Attached Table S1-S4 Download
[1] Ling XU,Hui LIU,Guijun YAN,Wallace COWLING,Weijun ZHOU,Zhanyuan LU. Molecular tools and technological innovation in oil crop breeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 445-453.
[2] Xiaoying GUO,Xiaoxia LIU,Jian WANG,Yuemin NI,Mingzhu LENG,Wuzhong NI. Fertility status and phosphorus loss risk of vegetable field soils in Xitiaoxi watershed[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 85-95.
[3] Yudong QUAN,Kongming WU. Research progress of vegetative insecticidal protein Vip3 insect-resistant transgenic crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 672-682.
[4] Xi FANG,Youping XU,Xinzhong CAI. Research progress of fire blight in fruit trees[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 731-743.
[5] Mingxia WEN,Hui XI,Shaohui WU,Na LI,Xijing CHEN. Effects of drip fertigation on production effect of mountain citrus orchard[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 566-572.
[6] Mengjiao LIU,Hang YI,Xinzhong CAI. Cyclic nucleotide-gated ion channel gene CNGC3 positively regulates immunity against Sclerotinia sclerotiorum in Arabidopsis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 594-604.
[7] Xuyang ZHANG,Ying LIU,Linli LONG,Yongdong SU,Dongxing CHEN,Xiaoyang CHEN. Review on analysis of soil moisture changes caused by coal mining subsidence in arid and semi-arid areas and their potential effects on plant physiology and ecology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 415-425.
[8] Ming CAO,Zuxi LONG,Yongwei WANG,Yuxuan PAN,Jun WANG. Impact of soil physical properties on the driving performance of a tracked tractor on paddy soils in the plastic state[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 125-134.
[9] Biao TANG,Yun HAO,Jiahui LIN,Jingge WANG,Xiaofeng JI,Mingrong QIAN,Hua YANG. Comparison and analysis of antimicrobial resistance of Escherichia coli and Enterococcus isolated from animals in Jinhua City and Taizhou City of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 647-659.
[10] Pengyao XIE,Haowei FU,Zheng TANG,Zhihong MA,Haiyan CEN. RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 415-428.
[11] Yongwei WANG,Zhuoliang HE,Jun WANG. Effects of boat-type parameters of boat-type tractor on working resistance and subsidence depth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 759-766.
[12] Gongga,Yifei WANG, Gesangzhuoma, Suolangsizhu, Nimayangzong, Labaciren. Identification of capsular serotype D Pasteurella multocida isolated from Tibetan swine and its biological characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 611-617.
[13] Zichen XIANG,Haifeng XIU,Kun MA,Shaona YANG,Bin ZHONG,Jiawei MA,Zebin RUAN,Wenhao JIN,Han CAO,Yaqian LI,Gaoqi JIN,Wenxuan LUO,Dan LIU. Effect of different ameliorants on coastal saline-alkali soil in eastern Zhejiang under elution conditions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 344-359.
[14] Qianqian TIAN,Fenglian HUANG,Kaixin WANG,Dajuan WAN,Jiaqi LI,Huan WANG. Land ecological suitability evaluation of nature reserve: with Wanfo Mountain Nature Reserve in Hunan Province as an example[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 201-208.
[15] Yibing ZENG,Liqiang JIANG,Guohua LI,Rui LIU,Hongye LI. Resistance and its molecular mechanism of Phyllosticta citricarpa and Phyllosticta citriasiana to benzimidazole fungicide[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 699-706.