Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 85-95    DOI: 10.3785/j.issn.1008-9209.2022.01.242
Resource utilization & environmental protection     
Fertility status and phosphorus loss risk of vegetable field soils in Xitiaoxi watershed
Xiaoying GUO1(),Xiaoxia LIU2,Jian WANG1,Yuemin NI3,Mingzhu LENG4,Wuzhong NI1()
1.Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Cultivated Land Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou 310020, Zhejiang, China
3.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Anji Agriculture and Rural Bureau, Huzhou 313300, Zhejiang, China
Download: HTML   HTML (   PDF(2363KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The high degree of intensive utilization of vegetable field soils is prone to nutrient imbalance and excessive accumulation, which hinders the sustainable development of vegetable production. Based on the analysis of fertility status and main obstacle factors of vegetable field soils under the open land and facility cultivation patterns in the Xitiaoxi watershed, the threshold of soil phosphorus (P) loss was explored in this study. The results indicated that the soil pH value under the open land cultivation pattern was significantly lower (P<0.05) than that under the facility cultivation pattern. The contents of soil total potassium (K), available K, available P, and water-extractable P under the facility cultivation pattern were significantly higher (P<0.05) than those under the open land cultivation pattern, as well as the total soluble salt content and electrical conductivity. It was also found that the fertility grades of vegetable field soils under the two cultivation patterns were mostly (95.8%) Grade Ⅱ. The correlation between soil water-extractable P and Mehlich 3-P was well illustrated with the piecewise linear regression equation. The threshold of Mehlich 3-P for controlling P loss from the open land and facility vegetable field soils was estimated to be 102.7 mg/kg and 128.7 mg/kg, respectively. Thus, the soil samples exceeding this threshold accounted for 65.0% and 83.3% of the total number of samples, respectively. In conclusion, the soil acidification and the risk of P loss under the open land and facility cultivation patterns in the Xitiaoxi watershed are serious, and the soil salinization under the facility cultivation pattern is an outstanding issue.



Key wordsvegetable field soils      cultivation patterns      soil fertility      secondary salinization      phosphorus loss      threshold     
Received: 24 January 2022      Published: 07 March 2023
CLC:  S158.2  
Corresponding Authors: Wuzhong NI     E-mail: xy.guo@zju.edu.cn;wzni@zju.edu.cn
Cite this article:

Xiaoying GUO,Xiaoxia LIU,Jian WANG,Yuemin NI,Mingzhu LENG,Wuzhong NI. Fertility status and phosphorus loss risk of vegetable field soils in Xitiaoxi watershed. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 85-95.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.01.242     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/85


西苕溪流域菜地土壤肥力状况与磷素流失风险

菜地土壤集约化利用程度高,容易出现养分不平衡和过量积累等问题,严重影响蔬菜产业的可持续发展。本文基于西苕溪流域露地和设施栽培模式下菜地土壤肥力状况和主要障碍因子分析,探究了菜地土壤磷素流失风险阈值。结果表明:露地菜地土壤pH值显著低于设施菜地(P<0.05);设施菜地土壤全钾、速效钾、有效磷、水溶性磷含量和水溶性盐总量、电导率显著高于露地菜地(P<0.05)。2种栽培模式下95.8%菜地土壤处于Ⅱ级肥力水平。土壤水溶性磷与Mehlich 3-P的关系可用分段线性回归方程表征,估算得出露地和设施菜地土壤磷素流失风险阈值分别为102.7、128.7 mg/kg,超过对应阈值的样本数分别占总数的65.0%和83.3%。综上所述,西苕溪流域内露地和设施菜地土壤酸化状况较为严重,磷素潜在流失风险非常高,其中设施菜地土壤次生盐渍化问题更为突出。


关键词: 菜地土壤,  栽培模式,  土壤肥力,  次生盐渍化,  磷素流失,  阈值 

土壤养分等级

Soil nutrient grade

养分 Nutrient
OM/(g/kg)TN/(g/kg)TP/(g/kg)TK/(g/kg)AN/(mg/kg)AP/(mg/kg)AK/(mg/kg)
极高 Extremely high≥50≥2.0≥2.0≥25≥150≥120≥200
高 High40~<501.5~<2.01.5~<2.020~<25120~<15090~<120150~<200
中上 Above average30~<401.2~<1.51.0~<1.515~<20100~<12050~<90125~<150
中下 Below average20~<301.0~<1.20.7~<1.010~<1580~<10030~<50100~<125
低 Low15~<200.8~<1.00.4~<0.75~<1070~<8015~<3075~<100
极低 Extremely low<15<0.8<0.4<5<70<15<75

临界值

Critical value

露地菜地

Open land vegetable field

301.21.01510050125

设施菜地

Facility vegetable field

401.51.52012090150
Table 1 Evaluation standards of vegetable field soil nutrient grades[18-19]
Fig. 1 Soil pH values in open land and facility vegetable fieldsOL: Open land cultivation; F: Facility cultivation. The line segments at the top and bottom of the box diagram represent the 95% and 5% of the data; the upper side and the lower side of the rectangle in the box diagram represent the 3rd and 1st quartiles, respectively, and the solid line in the middle of the rectangle represents the median, and the dash line represents the average value; and the solid dot in the figure represents the outlier. Different lowercase letters in the figure indicate significant differences at the 0.05 probability level. The same as below.
Fig. 2 Soil organic matter contents in open land and facility vegetable fieldsThe same lowercase letter in the figure indicates no significant differences at the 0.05 probability level, and the same as below.
Fig. 3 Soil cation exchange capacities in open land and facility vegetable fields
Fig. 4 Soil N, P and K contents in open land and facility vegetable fields
Fig. 5 Soil total soluble salt content and electrical conductivity in open land and facility vegetable fields
Fig. 6 Relationships between soil water-extractable P and Mehlich 3-P in open land vegetable fields
Fig. 7 Relationships between soil water-extractable P and Mehlich 3-P in facility vegetable fields
[1]   雷豪杰,李贵春,丁武汉,等.设施菜地土壤氮素运移及淋溶损失模拟评价[J].中国生态农业学报,2021,29(1):38-52. DOI:10.13930/j.cnki.cjea.200570
LEI H J, LI G C, DING W H, et al. Modeling nitrogen transport and leaching process in a greenhouse vegetable field[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 38-52. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.200570
[2]   高新昊,张英鹏,刘兆辉,等.种植年限对寿光设施大棚土壤生态环境的影响[J].生态学报,2015,35(5):1452-1459. DOI:10.5846/stxb201305070963
GAO X H, ZHANG Y P, LIU Z H, et al. Effects of cultivating years on soil ecological environment in greenhouse of Shouguang City, Shandong Province[J]. Acta Ecologica Sinica, 2015, 35(5): 1452-1459. (in Chinese with English abstract)
doi: 10.5846/stxb201305070963
[3]   钱晓雍.塑料大棚设施菜地土壤次生盐渍化特征[J].中国土壤与肥料,2017(5):73-79. DOI:10.11838/sfsc.20170513
QIAN X Y. Characteristics of secondary salinization of vegetable soil in plastic film greenhouse[J]. Soil and Fertilizer Sciences in China, 2017(5): 73-79. (in Chinese with English abstract)
doi: 10.11838/sfsc.20170513
[4]   余海英,李廷轩,张锡洲.温室栽培系统的养分平衡及土壤养分变化特征[J].中国农业科学,2010,43(3):514-522. DOI:10.3864/j.issn.0578-1752.2010.03.010
YU H Y, LI T X, ZHANG X Z. Nutrient budget and soil nutrient status in greenhouse system[J]. Scientia Agricultura Sinica, 2010, 43(3): 514-522. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2010.03.010
[5]   SHI W M, YAO J, YAN F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China[J]. Nutrient Cycling in Agroecosystems, 2009, 83(1): 73-84. DOI: 10.1007/s10705-008-9201-3
doi: 10.1007/s10705-008-9201-3
[6]   蔡祖聪.我国设施栽培养分管理中待解的科学和技术问题[J].土壤学报,2019,56(1):36-43. DOI:10.11766/trxb201805310286
CAl Z C. Scientific and technological issues of nutrient management under greenhouse cultivation in China[J]. Acta Pedologica Sinica, 2019, 56(1): 36-43. (in Chinese with English abstract)
doi: 10.11766/trxb201805310286
[7]   黄绍文,唐继伟,李春花,等.我国蔬菜化肥减施潜力与科学施用对策[J].植物营养与肥料学报,2017,23(6):1480-1493. DOI:10.11674/zwyf.17366
HUANG S W, TANG J W, LI C H, et al. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1480-1493. (in Chinese with English abstract)
doi: 10.11674/zwyf.17366
[8]   MACHADO R M A, SERRALHEIRO R P. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization[J]. Horticulturae, 2017, 3(2): 30. DOI: 10.3390/horticulturae3020030
doi: 10.3390/horticulturae3020030
[9]   王倩姿,王书聪,张书贵,等.潮土区菜田土壤肥力现状评价[J].农业资源与环境学报,2020,37(5):645-653. DOI:10.13254/j.jare.2019.0233
WANG Q Z, WANG S C, ZHANG S G, et al. Evaluation on fertility status of fluvo-aquic soil in a vegetable field[J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 645-653. (in Chinese with English abstract)
doi: 10.13254/j.jare.2019.0233
[10]   石宁,李彦,井永苹,等.长期施肥对设施菜田土壤氮、磷时空变化及流失风险的影响[J].农业环境科学学报,2018,37(11):2434-2442. DOI:10.11654/jaes.2018-1065
SHI N, LI Y, JING Y P, et al. Effect of long-term fertiliza-tion on spatio-temporal changes and risk of nitrogen and phosphorus loss in intensive vegetable production system soil[J]. Journal of Agro-Environment Science, 2018, 37(11):2434-2442. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-1065
[11]   韩沛华,闵炬,诸海焘,等.长三角地区设施蔬菜施肥现状及土壤性状研究[J].土壤,2020,52(5):994-1000. DOI:10.13758/j.cnki.tr.2020.05.017
HAN P H, MIN J, ZHU H T, et al. Fertilization status and soil physiochemical properties of greenhouse vegetable system in Yangtze River Delta[J]. Soils, 2020, 52(5): 994-1000. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2020.05.017
[12]   WANG R, MIN J, KRONZUCKER H J, et al. N and P runoff losses in China’s vegetable production systems: loss characteristics, impact, and management practices[J]. Science of the Total Environment, 2019, 663: 971-979. DOI: 10.1016/j.scitotenv.2019.01.368
doi: 10.1016/j.scitotenv.2019.01.368
[13]   HESKETH N, BROOKES P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105-110. DOI: 10.2134/jeq2000.0047 2425002900010013x
doi: 10.2134/jeq2000.0047
[14]   QIN X C, GUO S F, ZHAI L M, et al. How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil[J]. Environ-mental Pollution, 2020, 266: 115304. DOI: 10.1016/j.envpol.2020.115304
doi: 10.1016/j.envpol.2020.115304
[15]   柳后起,方正,孟岩,等.环太湖水体污染现状分析[J].生态环境学报,2020,29(11):2262-2269. DOI:10.16258/j.cnki.1674-5906.2020.11.014
LIU H Q, FANG Z, MENG Y, et al. Water quality assessment around Lake Taihu[J]. Ecology and Environmental Sciences, 2020, 29(11): 2262-2269. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2020.11.014
[16]   中华人民共和国环境保护部. 土壤 阳离子交换量的测定 三氯化六氨合钴浸提-分光光度法: [S].北京:中国标准出版社,2017.
The Ministry of Environmental Protection of the People’s Republic of China. Soil Quality: Determination of Cation Exchange Capacity (CEC): Hexamminecobalt Trichloride Solution: Spectrophotometric Method: HJ 889—2017 [S]. Beijing: Standards Press of China, 2017. (in Chinese)
[17]   鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
LU R K. Analytical Methods for Soil and Agro-Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[18]   沈汉,邹国元.菜地土壤评价中参评因素的选定与分级指标的划分[J].土壤通报,2004,35(5):553-557. DOI:10.19336/j.cnki.trtb.2004.05.007
SHEN H, ZOU G Y. Parameters selection for evaluation of vegetable soil quality and its gradation[J]. Chinese Journal of Soil Science, 2004, 35(5): 553-557. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2004.05.007
[19]   黄绍文,王玉军,金继运,等.我国主要菜区土壤盐分、酸碱性和肥力状况[J].植物营养与肥料学报,2011,17(4):906-918.
HUANG S W, WANG Y J, JIN J Y, et al. Status of salinity, pH and nutrients in soils in main vegetable production regions in China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 906-918. (in Chinese with English abstract)
[20]   中华人民共和国农业部. 南方地区耕地土壤肥力诊断与评价: [S].北京:中国标准出版社,2009. DOI:10.3969/j.issn.1003-9139.2018.03.002
The Ministry of Agriculture of the People’s Republic of China. Soil Fertility Diagnosis and Evaluation Method of Farmland in Southern China: NY/T 1749—2009 [S]. Beijing: Standards Press of China, 2009. (in Chinese)
doi: 10.3969/j.issn.1003-9139.2018.03.002
[21]   TOMS J D, LESPERANCE M L. Piecewise regression: a tool for identifying ecological thresholds[J]. Ecology, 2003, 84(8): 2034-2041. DOI: 10.1890/02-0472
doi: 10.1890/02-0472
[22]   康婷,周春火,魏宗强,等.江西省土壤阳离子交换量区域分布特征及其影响因素[J].中国农学通报,2021,37(14):66-71. DOI:10.11924/j.issn.1000-6850.casb2020-0486
KANG T, ZHOU C H, WEI Z Q, et al. Regional distribution characteristics and influencing factors of soil cation exchange capacity in Jiangxi[J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 66-71. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0486
[23]   ZHANG Z L, SUN D, TANG Y, et al. Plastic shed soil salinity in China: current status and next steps[J]. Journal of Cleaner Production, 2021, 296: 126453. DOI: 10.1016/j.jclepro.2021.126453
doi: 10.1016/j.jclepro.2021.126453
[24]   曾希柏,白玲玉,李莲芳,等.山东寿光不同利用方式下农田土壤有机质和氮磷钾状况及其变化[J].生态学报,2009,29(7):3737-3746. DOI:10.3321/j.issn:1000-0933.2009.07.035
ZENG X B, BAI L Y, LI L F, et al. The status and changes of organic matter, nitrogen, phosphorus and potassium under different soil using styles of Shouguang of Shandong Province[J]. Acta Ecologica Sinica, 2009, 29(7): 3737-3746. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2009.07.035
[25]   汪吉东,许仙菊,宁运旺,等.土壤加速酸化的主要农业驱动因素研究进展[J].土壤,2015,47(4):627-633. DOI:10.13758/j.cnki.tr.2015.04.001
WANG J D, XU X J, NING Y W, et al. Progresses in agricultural driving factors on accelerated acidification of soils[J]. Soils, 2015, 47(4): 627-633. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2015.04.001
[26]   曾路生,高岩,李俊良,等.寿光大棚菜地酸化与土壤养分变化关系研究[J].水土保持学报,2010,24(4):157-161. DOI:10.13870/j.cnki.stbcxb.2010.04.045
ZENG L S, GAO Y, LI J L, et al. Changes of acidification and nutrient accumulation in greenhouse vegetable soils in Shouguang[J]. Journal of Soil and Water Conservation, 2010, 24(4): 157-161. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2010.04.045
[27]   施毅超,胡正义,龙为国,等.轮作对设施蔬菜大棚中次生盐渍化土壤盐分离子累积的影响[J].中国生态农业学报,2011,19(3):548-553. DOI:10.3724/SP.J.1011.2011.00548
SHI Y C, HU Z Y, LONG W G, et al. Effect of crop rotation on ion accumulation in secondary salinization soil of vegetable field in greenhouse[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 548-553. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2011.00548
[28]   杜连凤,刘文科,刘建玲.三种秸秆有机肥改良土壤次生盐渍化的效果及生物效应[J].土壤通报,2005(3):309-312. DOI:10.19336/j.cnki.trtb.2005.03.005
DU L F, LI W K, LIU J L. Effects on rape biomass and salty concentration of salinity soil applied with three straw manures and effective dose[J]. Chinese Journal of Soil Science, 2005(3): 309-312. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2005.03.005
[29]   宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181. DOI:10.16258/j.cnki.1674-5906.2016.01.026
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175-181. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2016.01.026
[30]   ZHAO X R, ZHONG X Y, BAO H J, et al. Relating soil P concentrations at which P movement occurs to soil properties in Chinese agricultural soils[J]. Geoderma, 2007, 142(3/4): 237-244. DOI: 10.1016/j.geoderma.2007.07.012
doi: 10.1016/j.geoderma.2007.07.012
[31]   闫金垚,郭丽璇,王昆昆,等.长江流域稻-油轮作区土壤磷库现状及环境风险分析[J].土壤学报,2023,60(1):247-257. DOI:10.11766/trxb202108050327
YAN J Y, GUO L X, WANG K K, et al. Status of soil phosphorus pool and environmental risk assessment in rice-oilseed rape rotation area in the Yangtze River Basin[J]. Acta Pedologica Sinica, 2023, 60(1): 247-257. (in Chinese with English abstract)
doi: 10.11766/trxb202108050327
[32]   HUA L L, LIU J, ZHAI L M, et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices[J]. Agriculture, Ecosystems & Environ-ment, 2017, 245: 112-123. DOI: 10.1016/j.agee.2017.05.015
doi: 10.1016/j.agee.2017.05.015
[33]   王肖君,王季丰,侯琼,等.西苕溪流域主要经济林土壤磷素流失风险研究[J].土壤学报,2021,58(2):487-494. DOI:10.11766/trxb201908220433
WANG X J, WANG J F, HOU Q, et al. Potential risk of phosphorus loss from main non-wood forest soils in Xitiaoxi watershed[J]. Acta Pedologica Sinica, 2021, 58(2): 487-494. (in Chinese with English abstract)
doi: 10.11766/trxb201908220433
[34]   聂敏,肖和艾,廖敦秀,等. 亚热带可变电荷土壤磷素淋失临界点及其与土壤特性的关系[J].环境科学学报,2013,33(2):579-586. DOI:10.13671/j.hjkxxb.2013.02.026
NIE M, XIAO H A, LIAO D X, et al. Phosphorus leaching change point of subtropical variable-charge soils and its relations with soil properties[J]. Acta Scientiae Circumstantiae, 2013, 33(2): 579-586. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2013.02.026
[1] Mingxia WEN,Hui XI,Shaohui WU,Na LI,Xijing CHEN. Effects of drip fertigation on production effect of mountain citrus orchard[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 566-572.
[2] Meiyan SHU,Jiaxi WEI,Yeying ZHOU,Qizhou DONG,Haochong CHEN,Zhigang HUANG,Yuntao MA. Diagnosis of citrus leaf canker disease based on naive Bayesian classification[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 429-438.
[3] Zichen XIANG,Haifeng XIU,Kun MA,Shaona YANG,Bin ZHONG,Jiawei MA,Zebin RUAN,Wenhao JIN,Han CAO,Yaqian LI,Gaoqi JIN,Wenxuan LUO,Dan LIU. Effect of different ameliorants on coastal saline-alkali soil in eastern Zhejiang under elution conditions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 344-359.
[4] Fangyuan FAN,Xiaolei YANG,Shuying GONG,Haowei GUO,Bangzheng ZONG,Chunlin LI,Hong QIAN,Jianping HU. Study on yellow tea taste characteristic and contribution of taste-chemical compositions to taste quality based on partial main cultivated cultivars in Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 443-451.
[5] ZHANG Jian-xin,FANG Yi-qiu,DING Yan-fen,FANG Yan-ming. Chlorophyll contents , photosynthetic parameters , and shade tolerance of ferns[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 413-420.