Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (4): 516-525    DOI: 10.3785/j.issn.1008-9209.2023.02.211
Research articles     
Effect of CaO2 on alleviating waterlogging stress of winter rape at seedling stage
Shang LUO1,2(),Zhiyuan WANG1,2(),Changwei LI1,2,Na JIANG1,2,Yongliang HAN1,2,Xiangmin RONG1,2,Lan YANG1,2()
1.College of Resources, Hunan Agricultural University, Changsha 410128, Hunan, China
2.National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, Hunan, China
Download: HTML   HTML (   PDF(6277KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To evaluate the effect of CaO2 on alleviating waterlogging stress of winter rape at seedling stage, a pot experiment was conducted with Fengyou 958 (FY958) as experimental material. There were six application amounts of CaO2 (0, 0.7, 1.2, 1.7, 2.2, and 2.7 g/kg) treatments in this study, and the effects of different application amounts of CaO2 on the survival rates, activities of antioxidant enzymes in leaves and fermentative enzymes in roots, and root activity of rape seedlings under waterlogging condition were studied. The results showed that waterlogging stress seriously affected the growth of rape, resulting in a significant decrease in the survival rate, fresh mass and leaf SPAD value of rape seedlings. The application of CaO2 can significantly alleviate the effect of waterlogging stress on rape. Compared with plants without CaO2 treatment under waterlogging condition, the fresh mass and leaf SPAD values of rape seedlings treated with CaO2 significantly increased by 85.4%-108.0% and 24.3%-43.0%, respectively. The activities of antioxidant enzymes in leaves and fermentative enzymes in roots were both significantly reduced. The root activity was significantly increased by 66.7%-316.7%. Moreover, with the increase of the application amounts of CaO2, the effect of alleviating waterlogging stress became more obvious. In summary, waterlogging stress inhibited the normal growth of rape seedlings. The appropriate application amounts of CaO2 (1.7-2.7 g/kg) could reduce the anaerobic respiration of roots, alleviate the effect of peroxidation stress on rape, and increase the root activity and chlorophyll contents (SPAD values) of leaves, so as to improve carbohydrate synthesis in leaves, and thus restore rape seedling growth and ensure later rape yields. This study verified the feasibility of CaO2 in alleviating waterlogging stress of winter rape at seedling stage.



Key wordswaterlogging stress      winter rape      CaO2      antioxidant enzyme      anaerobic respiration     
Received: 21 February 2023      Published: 29 August 2023
CLC:  S565.4  
Corresponding Authors: Lan YANG     E-mail: 1219740859@qq.com;644053373@qq.com;helloyanglan@163.com
Cite this article:

Shang LUO,Zhiyuan WANG,Changwei LI,Na JIANG,Yongliang HAN,Xiangmin RONG,Lan YANG. Effect of CaO2 on alleviating waterlogging stress of winter rape at seedling stage. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 516-525.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.02.211     OR     https://www.zjujournals.com/agr/Y2023/V49/I4/516


过氧化钙缓解冬油菜苗期渍害胁迫的效应研究

为评价过氧化钙缓解冬油菜苗期渍害(渍水)胁迫的效应,以常规冬油菜品种沣油958(FY958)为试验材料,通过盆栽试验,设置不同施用量的过氧化钙(0、0.7、1.2、1.7、2.2、2.7 g/kg)处理,研究渍水条件下,不同的过氧化钙施用量对油菜幼苗存活率、叶片抗氧化酶和根系发酵酶活性以及根系活力等生理指标的影响。结果表明,渍水胁迫严重影响了油菜生长,造成油菜幼苗的存活率、鲜质量和叶片SPAD值显著降低。施用过氧化钙可明显缓解渍水胁迫对油菜的影响。与渍水条件下未施用过氧化钙的植株相比,施用过氧化钙后,油菜幼苗的鲜质量和叶片SPAD值显著提高,幅度分别为85.4%~108.0%和24.3%~43.0%;叶片抗氧化酶与根系发酵酶活性显著降低;同时,根系活力显著提高,增幅为66.7%~316.7%。并且,随着过氧化钙施用量的增加,其改善渍水胁迫的效果更加明显。上述研究结果表明,渍水胁迫会抑制油菜幼苗的生长。适宜的过氧化钙施用量(1.7~2.7 g/kg)能降低根系无氧呼吸,减轻过氧化胁迫对油菜的影响,提高油菜根系活力和叶片叶绿素含量(SPAD值),从而提高叶片碳水化合物合成能力,进而恢复油菜幼苗生长、保证油菜后期产量。本研究验证了过氧化钙缓解冬油菜苗期渍害胁迫的可行性。


关键词: 渍害胁迫,  冬油菜,  过氧化钙,  抗氧化酶,  无氧呼吸 

油菜种子出苗率试验

Emergence rate experiment of rape seeds

油菜渍水试验

Waterlogging experiment of rape

处理

Treatment

播种量/(粒/盆)

Sowing quantity/

(grain/pot)

是否渍水

Waterlogging

or not

CaO2施用量

Application amount

of CaO2/(g/kg)

处理

Treatment

留种数/(株/盆)

Number of reserved

seeds/(plant/pot)

是否渍水

Waterlogging

or not

CaO2施用量

Application amount

of CaO2/(g/kg)

CK01000CK200
C11000.7CK+H2O200
C21001.2C1+H2O200.7
C31001.7C2+H2O201.2
C41002.2C3+H2O201.7
C51002.7C4+H2O202.2
C5+H2O202.7
Table 1 Experimental design

处理

Treatment

CaO2施用量

Application amountof CaO2/(g/kg)

出苗率

Emergence rate/%

CK0074.8±3.2a
C10.775.3±3.6a
C21.280.6±4.6a
C31.774.5±3.5a
C42.270.1±2.6a
C52.775.3±7.2a
Table 2 Effects of different application amounts of CaO2 on emergence rates of rape seeds
Fig. 1 Growth phenotypes of rape seedlings under different application amounts of CaO2 and waterlogging conditions
处理

20 d存活率

Survival rate at 20 d

25 d存活率

Survival rate at 25 d

30 d存活率

Survival rate at 30 d

CK96.25±2.39a96.25±2.39a96.25±2.39a
CK+H2O77.50±8.78b66.82±9.22b65.80±7.88b
C1+H2O91.25±5.54a87.65±3.95a87.65±3.95a
C2+H2O81.61±3.74ab80.04±1.92a80.04±1.92a
C3+H2O92.50±3.23a88.97±2.41a86.40±2.54a
C4+H2O90.00±5.40ab87.50±2.78a87.50±2.78a
C5+H2O96.67±2.04a96.67±2.04a89.42±7.50a
Table 3 Effects of different application amounts of CaO2 on survival rates of rape seedlings under waterlogging condition
Fig. 2 Effects of different application amounts of CaO2 on fresh mass of rape seedlings under waterlogging conditionDifferent lowercase letters above bars indicate significant differences among different treatments at the same waterlogging time at the 0.05 probability level, and n=4. The same as Fig. 3.
Fig. 3 Effects of different application amounts of CaO2 on SPAD values of rape seedling leaves under waterlogging condition
Fig. 4 Effects of different application amounts of CaO2 on antioxidant enzyme activities in rape seedling leaves at waterlogging for 20 dDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level, and n=4. The same as Figs. 5-6.
Fig. 5 Effects of different application amounts of CaO2 on fermentative enzyme activities in rape seedling roots at waterlogging for 20 d
Fig. 6 Effects of different application amounts of CaO2 on root activities of rape seedlings at waterlogging for 20 d
[1]   王寅,鲁剑巍.中国冬油菜栽培方式变迁与相应的养分管理策略[J].中国农业科学,2015,48(15):2952-2966. DOI:10.3864/j.issn.0578-1752.2015.15.005
WANG Y, LU J W. The transitional cultivation patterns of winter oilseed rape in China and the corresponding nutrient management strategies[J]. Scientia Agricultura Sinica, 2015, 48(15): 2952-2966. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.15.005
[2]   王涛.气候变化对中国油菜产量的影响研究[D].湖北,武汉:华中农业大学,2021.
WANG T. Research on the impact of climate change on China’s rape production[D]. Wuhan, Hubei: Huazhong Agricultural University, 2021. (in Chinese with English abstract)
[3]   佟汉文,刘易科,朱展望,等.作物耐渍鉴定与评价方法的研究进展[J].作物杂志,2015(6):10-15. DOI:10.16035/j.issn.1001-7283.2015.06.002
TONG H W, LIU Y K, ZHU Z W, et al. Progress on identification and evaluation of waterlogging tolerance in crops[J]. Crops, 2015(6): 10-15. (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2015.06.002
[4]   宋楚崴.施氮水平和花期渍水胁迫对油菜产量形成的影响的研究[D].江苏,南京:南京农业大学,2017.
SONG C W. Effects of post antithesis waterlogging stress under different fertilizer levels on yield formation[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2017. (in Chinese with English abstract)
[5]   高敬文,苏瑶,沈阿林.渍害胁迫下小麦生长的响应机理及调控措施研究进展[J].应用生态学报,2020,31(12):4321-4330. DOI:10.13287/j.1001-9332.202012.028
GAO J W, SU Y, SHEN A L. Research progress of the response mechanism of wheat growth to waterlogging stress and the related regulating managements[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4321-4330. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.202012.028
[6]   张斯媚.我国油菜生产现状及发展前景分析[J].农村经济与科技,2016,27(20):35. DOI:10.3969/j.issn.1007-7103.2016.20.024
ZHANG S M. Analysis on current situation and development prospect of rape production in China[J]. Rural Economy and Science-Technology, 2016, 27(20): 35. (in Chinese)
doi: 10.3969/j.issn.1007-7103.2016.20.024
[7]   王琼,张春雷,李光明,等.渍水胁迫对油菜根系形态与生理活性的影响[J].中国油料作物学报,2012,34(2):157-162. DOI:10.1007/s11738-012-1024-9
WANG Q, ZHANG C L, LI G M, et al. Influences of waterlogging stress on roots morphology and physiology for rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(2): 157-162. (in Chinese with English abstract)
doi: 10.1007/s11738-012-1024-9
[8]   MEI J H, WANG W Q, PENG S B, et al. Seed pelleting with calcium peroxide improves crop establishment of direct-seeded rice under waterlogging conditions[J]. Scientific Reports, 2017, 7: 4878. DOI: 10.1038/s41598-017-04966-1
doi: 10.1038/s41598-017-04966-1
[9]   MAGNESCHI L, PERATA P. Rice germination and seedling growth in the absence of oxygen[J]. Annals of Botany, 2009, 103(2): 181-196. DOI: 10.1093/aob/mcn121
doi: 10.1093/aob/mcn121
[10]   MUSTROPH A, BOAMFA E I, LAARHOVEN L J J, et al. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings Ⅱ: light exposure reduces needs for fermentation and extends survival during anaerobiosis[J]. Planta, 2006, 225(1): 139-152. DOI: 10.1007/s00425-006-0336-7
doi: 10.1007/s00425-006-0336-7
[11]   黄万勇,吉陈丽.渍害对作物生理生长指标的影响研究现状[J].浙江水利科技,2019,47(3):12-15. DOI:10.13641/j.cnki.33-1162/tv.2019.03.004
HUANG W Y, JI C L. Research status of effect on physiology and growth characteristics of crops under waterlogging damage condition[J]. Zhejiang Hydrotechnics, 2019, 47(3): 12-15. (in Chinese with English abstract)
doi: 10.13641/j.cnki.33-1162/tv.2019.03.004
[12]   谢幽兰.湖北省油菜花角期渍害指标及时空分布规律研究[D].湖北,武汉:华中农业大学,2018.
XIE Y L. Study on indicator and spatio-temporal distribution of rape waterlogging in Hubei Province[D]. Wuhan, Hubei: Huazhong Agricultural University, 2018. (in Chinese with English abstract)
[13]   DA-SILVA C J, AMARANTE L D DO. Time-course bioche-mical analyses of soybean plants during waterlogging and reoxygenation[J]. Environmental and Experimental Botany, 2020, 180: 104242. DOI: 10.1016/j.envexpbot.2020.104242
doi: 10.1016/j.envexpbot.2020.104242
[14]   SHABALA S, SHABALA L, BARCELO J, et al. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding[J]. Plant, Cell & Environment, 2014, 37(10): 2216-2233. DOI: 10.1111/pce.12339
doi: 10.1111/pce.12339
[15]   LU S G, ZHANG X, XUE Y F. Application of calcium peroxide in water and soil treatment: a review[J]. Journal of Hazardous Materials, 2017, 337: 163-177. DOI: 10.1016/j. jhazmat.2017.04.064
doi: 10.1016/j. jhazmat.2017.04.064
[16]   WANG Z Y, HAN Y L, LUO S, et al. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field[J]. Frontiers in Plant Science, 2022, 13: 1048227. DOI: 10.3389/fpls.2022.1048227
doi: 10.3389/fpls.2022.1048227
[17]   王玲玲.缓释过氧化钙对潜育稻田的改良效果研究[D].湖南,长沙:湖南大学,2018.
WANG L L. Study on the effect of slow-release calcium peroxide on the gleying paddy fields[D]. Changsha, Hunan: Hunan University, 2018. (in Chinese with English abstract)
[18]   梅俊豪.种子丸粒化在水稻湿直播上的应用初探[D].湖北,武汉:华中农业大学,2017. DOI:10.1038/s41598-017-04966-1
MEI J H. A preliminary study on application of seed pelleting in wet direct seeded rice[D]. Wuhan, Hubei: Huazhong Agri-cultural University, 2017. (in Chinese with English abstract)
doi: 10.1038/s41598-017-04966-1
[19]   LEGGATT C W, JUSTICE O L, HAY W D, et al. Rules for testing seeds[C]//Proceedings of the Association of Official Seed Analysts. [S. l.]: Association of Official Seed Analysts, 1949, 39: 23-59.
[20]   SIVASANKAR S, OAKS A. Regulation of nitrate reductase during early seedling growth (a role for asparagine and glutamine)[J]. Plant Physiology, 1995, 107(4): 1225-1231.
[21]   王学奎,黄见良.植物生理生化实验原理与技术[M].3版.北京:高等教育出版社,2015. DOI:10.1016/j.plaphy.2015.01.002
WANG X K, HUANG J L. Experimental Principles and Techniques of Plant Physiology and Biochemistry[M]. 3rd ed. Beijing: Higher Education Press, 2015. (in Chinese)
doi: 10.1016/j.plaphy.2015.01.002
[22]   HANSON A D, JACOBSEN J V, ZWAR J A. Regulated expression of three alcohol dehydrogenase genes in barley aleurone layers[J]. Plant Physiology, 1984, 75(3): 573-581.
[23]   赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002:45-48.
ZHAO S J, SHI G A, DONG X C. Experimental Guidance of Plant Physiology[M]. Beijing: China Agricultural Science and Technology Press, 2002: 45-48. (in Chinese)
[24]   周阳,黄旭,赵海燕,等.麦秸秆和沼液配施对水稻苗期生长和土壤微生物的调控[J].土壤学报,2020,57(2):479-489. DOI:10.11766/trxb201905060077
ZHOU Y, HUANG X, ZHAO H Y, et al. Regulation of wheat straw and biogas slurry application on rice seedling growth and soil microorganism[J]. Acta Pedologica Sinica, 2020, 57(2): 479-489. (in Chinese with English abstract)
doi: 10.11766/trxb201905060077
[25]   MEN S N, CHEN H L, CHEN S H, et al. Effects of supplemental nitrogen application on physiological charac-teristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress[J]. Scientific Reports, 2020, 10: 10201. DOI: 10.1038/s41598-020-67260-7
doi: 10.1038/s41598-020-67260-7
[26]   PLOSCHUK R A, MIRALLES D J, COLMER T D, et al. Waterlogging of winter crops at early and late stages: impacts on leaf physiology, growth and yield[J]. Frontiers in Plant Science, 2018, 9: 1863. DOI: 10.3389/fpls.2018.01863
doi: 10.3389/fpls.2018.01863
[27]   BAILEY-SERRES J, CHANG R. Sensing and signalling in response to oxygen deprivation in plants and other organisms[J]. Annals of Botany, 2005, 96(4): 507-518. DOI: 10.1093/aob/mci206
doi: 10.1093/aob/mci206
[28]   MHAMDI A, VAN BREUSEGEM F. Reactive oxygen species in plant development[J]. Development, 2018, 145(15): dev164376. DOI: 10.1242/dev.164376
doi: 10.1242/dev.164376
[29]   STEFFENS B, GESKE T, SAUTER M. Aerenchyma formation in the rice stem and its promotion by H2O2 [J]. New Phytologist, 2011, 190(2): 369-378. DOI: 10.1111/j.1469-8137.2010.03496.x
doi: 10.1111/j.1469-8137.2010.03496.x
[30]   DOUPIS G, KAVROULAKIS N, PSARRAS G, et al. Growth, photosynthetic performance and antioxidative response of ‘Hass’ and ‘Fuerte’ avocado (Persea americana Mill.) plants grown under high soil moisture[J]. Photosynthetica, 2017, 55(4): 655-663. DOI: 10.1007/s11099-016-0679-7
doi: 10.1007/s11099-016-0679-7
[31]   PAN J W, SHARIF R, XU X W, et al. Mechanisms of waterlogging tolerance in plants: research progress and prospects[J]. Frontiers in Plant Science, 2021, 11: 627331. DOI: 10.3389/fpls.2020.627331
doi: 10.3389/fpls.2020.627331
[32]   赵楠.菊花CmMBF1c基因调控耐涝性的分子机制研究[D].江苏,南京:南京农业大学,2019.
ZHAO N. Molecular mechanisms of CmMBF1c involved in chrysanthemum waterlogging tolerance[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2019. (in Chinese with English abstract)
[33]   BUI L T, NOVI G, LOMBARDI L, et al. Conservation of ethanol fermentation and its regulation in land plants[J]. Journal of Experimental Botany, 2019, 70(6): 1815-1827. DOI: 10.1093/jxb/erz052
doi: 10.1093/jxb/erz052
[34]   BICZAK R. Quaternary ammonium salts with tetrafluoroborate anion: phytotoxicity and oxidative stress in terrestrial plants[J]. Journal of Hazardous Materials, 2016, 304: 173-185. DOI: 10.1016/j.jhazmat.2015.10.055
doi: 10.1016/j.jhazmat.2015.10.055
[35]   张佳琳.补钙增氧对苹果根际微生物和养分吸收及大树生产性能的影响[D].山东,泰安:山东农业大学,2022. DOI:10.17660/ejhs.2022/035
ZHANG J L. Effects of calcium and oxygen supplementation on microorganisms and nutrient absorption in apple rhizosphere and production performance of big trees[D]. Tai’an, Shandong: Shandong Agricultural University, 2022. (in Chinese with English abstract)
doi: 10.17660/ejhs.2022/035
[36]   杨再强,邱译萱,刘朝霞,等.土壤水分胁迫对设施番茄根系及地上部生长的影响[J].生态学报,2016,36(3):748-757. DOI:10.5846/stxb201403310606
YANG Z Q, QIU Y X, LIU Z X, et al. The effects of soil moisture stress on the growth of root and above-ground parts of greenhouse tomato crops[J]. Acta Ecologica Sinica, 2016, 36(3): 748-757. (in Chinese with English abstract)
doi: 10.5846/stxb201403310606
[37]   SARLISTYANINGSIH L, SIVASITHAMPARAM K, SETTER T L. Influence of waterlogging on germination and survival of lupin seeds (Lupinus angustifolius L. cv. Gungurru) coated with calcium peroxide and streptomycin[J]. Australian Journal of Experimental Agriculture, 1995, 35(4): 537-541.
[38]   CHO I, LEE K. Effect of calcium peroxide on the growth and proliferation of Microcystis aerusinosa, a water-blooming cyanobacterium[J]. Biotechnology and Bioprocess Engineering, 2002, 7(4): 231-233. DOI: 10.1007/BF02932976
doi: 10.1007/BF02932976
[1] Ren ZHOU,Yu CAI,Tianyi LIN,Mingliang CHAI. Effects of melatonin and epibrassinolide on the regeneration of long-term subcultured callus of Zoysia matrella (L.) Merr. under simulated drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 36-44.
[2] Elmon CHINDUDZI,Bangrong SU,Yi GUO,Zhentao ZHONG,Jane MAKONI,Shuijin ZHU,Jinhong CHEN. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 647-656.
[3] Yuzhen WANG,Yao MA,Qi CHEN,Hongyan MA,Jing YANG,Chen LIU,Junzhi LI,Xiaokui MA. Effects of monochromatic lights on the growth and antioxidant enzyme activity of Sanghuangporus sanghuang[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 542-549.
[4] WANG Shutian,WANG Jinping,ZHANG Jinchi,YUE Jianmin. Effects of exogenous 2,4-epibrassinolide on antioxidant enzyme activities of camphor seedlings under salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 476-482.
[5] Liu Yongshi, Shi Yonghai*, Zhang Genyu, Xie Yongde, Xu Jiabo, Deng Pingping, Zhang Zongfeng. Growth, digestive enzyme and antioxidant enzyme activities of tawny puffer (Takifugu flavidus) larvae.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 688-696.
[6] LIU Yonghua1, YANG Xinqin2, WU Xiaohua1, WANG Baogen1, XU Pei1, LI Guojing1. Effects of the liquid of decomposed asparagus bean stubs on sucrose metabolism and antioxidant enzyme activities in hypocotyls of different asparagus bean cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 459-466.