Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 98-108    DOI: 10.3785/j.issn.1008-9209.2023.03.012
Resource Utilization & Environmental Protection     
Composition and dynamic change characteristics of human pathogenic communities in dryland farmland with manure application
Minghui QI1(),Jianhua CHENG1,2(),Xiangyu TANG1,2
1.State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
2.Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
Download: HTML   HTML (   PDF(2166KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To understand the community structure composition and dynamic change characteristics of human pathogenic bacteria (HPB) in soils after manure application, laboratory cultivation experiments were conducted on agricultural soils with long-term application of chicken manure, pig manure, or chemical fertilizer in five regions of Hangzhou, Jiaxing, Quzhou, Jinhua, and Longyou in Zhejiang Province, and the community compositions of the soil bacteria and HPB were analyzed by high-throughput sequencing and sequence alignment methods. The results showed that a total of 75 HPB were detected in 160 soil samples and two manure samples, and the dominant HPB were Bacillus_megaterium_QM_B1551 (24.2%) and Clostridium_beijerinckii_NCIMB_8052 (23.1%). The Shannon indexes of bacteria and HPB in the soils decreased after the application of pig manure, while the diversities of bacteria and HPB in the soils with the application of chicken manure or chemical fertilizer had no significant changes. The results of the principal coordinate analysis showed that there was a significant difference in the bacterial community composition of soils between the manure treatment and the unfertilized control, especially in the pig manure treatment (P<0.001); 22.7% of all HPB were shared among the soil samples; and the relative abundance of most HPB in the soils treated with manure was higher than that in the unfertilized control, and it decreased continuously with the extension of cultivation time. The results of the variance partitioning analysis showed that soil physicochemical properties, bacterial communities, and their interactions were important factors contributing to the variation of HPB in the soils. In summary, the HPB variation characteristics in soils treated with manure are influenced mainly by manure types, soil types, soil physicochemical properties, and inherent bacterial communities.



Key wordshuman pathogenic bacteria      manure      bacterial community      soil      dynamic change     
Received: 01 March 2023      Published: 01 March 2024
CLC:  S154.3  
Corresponding Authors: Jianhua CHENG     E-mail: 2020102022012@stu.zafu.edu.cn;chengjh@zafu.edu.cn
Cite this article:

Minghui QI,Jianhua CHENG,Xiangyu TANG. Composition and dynamic change characteristics of human pathogenic communities in dryland farmland with manure application. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 98-108.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.03.012     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/98


施肥旱作农田土壤中人类病原菌群落组成及动态变化特征

采集浙江省杭州、嘉兴、衢州、金华、龙游5个地区长期施用鸡粪、猪粪或化肥的农田土壤进行室内培养实验,然后采用高通量测序及序列比对方法分析供试土壤细菌和人类病原菌(human pathogenic bacteria, HPB)群落组成,旨在进一步探究施用粪肥后土壤中HPB群落组成差异及动态变化特征。结果表明:在160个供试土壤样品和2种粪肥样品中共比对到75种HPB,其中优势HPB为巨大芽孢杆菌(Bacillus_megaterium_QM_B1551,24.2%)和拜氏梭菌(Clostridium_beijerinckii_NCIMB_8052,23.1%);施用猪粪处理的土壤中细菌和HPB的香农(Shannon)指数均有所降低,而施用鸡粪或化肥处理的土壤中细菌和HPB多样性无明显变化。主坐标分析结果表明,施用粪肥处理的土壤细菌群落组成与未施肥对照之间具有显著差异,尤其是施用猪粪处理差异最显著(P<0.001);土壤样品间共有HPB占所有HPB的22.7%;施用粪肥处理的土壤中大部分HPB的相对丰度高于未施肥对照,并随培养时间的延长而不断下降。方差分解分析结果表明,土壤理化性质、细菌群落及两者交互作用是土壤中HPB变异的重要因素。综上所述,施用粪肥处理的土壤中HPB的变化特征主要受肥料类型、土壤类型、土壤理化性质及固有细菌群落的影响。


关键词: 人类病原菌,  粪肥,  细菌群落,  土壤,  动态变化 

原始土壤样品

Original soil sample

pH值

pH value

电导率

EC/

(μS/cm)

铵态氮

NH4-N/

(mg/kg)

硝态氮

NO3-N/

(mg/kg)

有效磷

AP/

(mg/kg)

总有机碳

TOC/

(mg/g)

全磷

TP/

(mg/g)

全氮

TN/

(mg/g)

全钾

TK/

(mg/g)

嘉兴市

JX

CM_Soil7.54103.5512.2724.9171.2920.762.501.686.89
PM_Soil8.08132.2519.8042.11129.5626.641.341.816.92
NPK_Soil6.8694.3016.7340.9799.1623.011.301.686.60

汤溪镇

(金华市)

TX

CM_Soil5.5763.7515.0528.98750.8822.230.991.324.96
PM_Soil6.45120.9019.1062.231 457.0424.080.601.425.25
NPK_Soil4.5856.556.8227.0938.3313.400.491.294.49

塘坞

(衢州市)

TW

CM_Soil5.8382.3516.7346.7845.9418.812.771.156.26
PM_Soil5.16103.3522.4471.23305.4419.882.281.186.51
NPK_Soil7.96142.504.9990.9430.0923.324.441.115.72

昌化镇

(杭州市)

CH

CM_Soil7.13704.5012.45520.70540.9952.083.808.5110.27
PM_Soil7.93190.005.81108.5144.0616.740.121.076.32
NPK_Soil5.3366.959.0125.82201.1915.010.110.986.84

龙游市

LY

CM_Soil5.60283.0037.59119.82134.4428.350.111.196.16
PM_Soil6.79166.3525.0568.62587.5529.380.101.355.97
1_NPK_Soil4.8938.9514.7313.65136.326.650.550.577.46
2_NPK_Soil4.7963.2010.8523.34112.7915.590.480.647.25
Table 1 Basic physicochemical properties of the original soil samples

采样地

Sampling site

处理

Treatment

pH值pH value

电导率

EC/

(μS/cm)

铵态氮

NH4-N/

(mg/kg)

硝态氮

NO3-N/

(mg/kg)

总有机碳

TOC/

(mg/g)

有效磷

AP/

(mg/kg)

全磷

TP/

(mg/g)

全氮

TN/

(mg/g)

JXCMs6.89bc543.60a21.63a292.04ab32.00b219.94b1.79a1.32a
CMs_CK7.22ab194.70b4.60b121.82b27.25c101.28c1.58b1.08a
PMs7.37a603.80a11.69ab415.64a35.39a369.72a1.56b1.59a
PMs_CK7.16ab267.00b3.86b190.39b31.12b163.64bc1.38c1.44a
NPKs6.69c224.20b10.24ab164.40b26.71c137.86c1.55b1.20a
NPKs_CK6.83bc156.32b3.56b114.81b27.07c133.73c1.59b1.08a
TXCMs5.78c386.40b65.02a122.35b27.42b886.57c2.74c1.09bc
CMs_CK4.97d153.96d14.97bc123.80b24.30c756.81c2.34d0.82cd
PMs6.54a531.40a26.11b342.07a32.57a1 251.15b5.88a2.03a
PMs_CK6.21b251.18c4.11c191.70b28.92b1 529.93a5.40b1.54b
NPKs4.30e146.48d27.34b80.17b12.71d29.95d0.77e0.41d
NPKs_CK4.46e77.50e2.54c46.27b13.23d23.47d0.80e0.49d
TWCMs6.38b460.60a70.32a146.86a24.92b223.50c1.76c1.45a
CMs_CK5.60c139.84d8.57c122.18a19.22c72.01d1.32e0.89b
PMs6.00bc372.80ab36.93b219.59a26.63b589.09a2.40a0.70b
PMs_CK5.00d171.34d15.13c150.84a20.41c303.85b1.98b0.65b
NPKs7.30a285.62bc8.41c201.68a29.52a60.72d1.46d0.61b
NPKs_CK7.46a209.54cd3.75c146.36a28.98a63.51d1.45d0.62b
CHCMs7.05b1 357.60a686.60b807.62a223.17a748.78a5.41a10.16a
CMs_CK7.05b1 087.00a1 087.00a816.84a213.78a630.11b4.82b8.95b
PMs7.36ab536.80b465.09bc315.12b28.66b223.51c1.35c0.86c
PMs_CK7.59a248.60bc248.60c180.99b25.78b56.53d1.03c0.75c
NPKs4.94c203.00bc203.00c127.35b17.48b202.02c1.37c0.69c
NPKs_CK5.10c126.46c126.46c85.41b15.75b192.44c1.35c0.58c
LYCMs5.78b846.20a66.41a363.84a34.76b307.26b2.30b1.25b
CMs_CK4.74c389.80b5.10c295.64ab25.55c83.95b1.55c1.03bc
PMs6.82a493.40b25.74bc302.12ab38.86a1 611.15a6.79a1.99a
PMs_CK6.55a272.26c14.78bc183.70bc33.65b1 362.30a6.73a1.86a
1_NPKs4.68c137.56d39.32ab92.86c10.00f135.69b0.87d0.36d
1_NPKs_CK4.85c91.20d13.59bc61.58c9.99f125.05b0.82d0.33d
2_NPKs4.58c163.08cd29.10bc89.95c20.72d98.09b0.94d0.39d
2_NPKs_CK4.68c104.88d18.54bc65.86c17.24e88.90b0.99d0.54cd
Table 2 Basic physicochemical properties of the cultured soil samples
Fig. 2 Numbers of shared and unique HPB among different samples at the genus level (A) and the composition of detected HPB at the phylum level (B)The dotted line diagram represents different intersections between sets, with the single node representing the unique HPB and the connected nodes representing the shared HPB.
Fig. 3 Differences in the soil bacterial community composition (A) and HPB composition (B) under different fertilization treatments in different sampling sites
Fig. 4 Relative abundance of HPB in soils treated with chicken manure (A), pig manure (B), and chemical fertilizer (C)
Fig. 5 Effects of soil physicochemical properties and bacterial communities on HPB composition changes
[1]   VAN BRUGGEN A H C, GOSS E M, HAVELAAR A, et al. One Health-Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health[J]. Science of the Total Environment, 2019, 664: 927-937. DOI: 10.1016/j.scitotenv.2019.02.091
doi: 10.1016/j.scitotenv.2019.02.091
[2]   NINH H T, GRANDY A S, WICKINGS K, et al. Organic amendment effects on potato productivity and quality are related to soil microbial activity[J]. Plant and Soil, 2015, 386(1/2): 223-236. DOI: 10.1007/s11104-014-2223-5
doi: 10.1007/s11104-014-2223-5
[3]   LAN Z L, ZHAO Y, ZHANG J G, et al. Effects of the long-term fertilization on pore and physicochemical characteristics of loess soil in Northwest China[J]. Agronomy Journal, 2020, 112(6): 4741-4751. DOI: 10.1002/agj2.20401
doi: 10.1002/agj2.20401
[4]   OLIVER D M, CLEGG C D, HAYGARTH P M, et al. Assessing the potential for pathogen transfer from grassland soils to surface waters[M]//SPARKS D L. Advances in Agronomy. Amsterdam: Elsevier, 2005: 125-180. DOI: 10.1016/s0065-2113(04)85003-x
doi: 10.1016/s0065-2113(04)85003-x
[5]   FEWTRELL L, KAY D. Recreational water and infection: a review of recent findings[J]. Current Environmental Health Reports, 2015, 2(1): 85-94. DOI: 10.1007/s40572-014-0036-6
doi: 10.1007/s40572-014-0036-6
[6]   LI H Y, ZHENG X Q, TAN L, et al. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers[J]. Environmental Research, 2022, 203: 111884. DOI: 10.1016/j.envres.2021.111884
doi: 10.1016/j.envres.2021.111884
[7]   ALEGBELEYE O O, SINGLETON I, SANT’ANA A S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review[J]. Food Microbiology, 2018, 73: 177-208. DOI: 10.1016/j.fm.2018.01.003
doi: 10.1016/j.fm.2018.01.003
[8]   FANG H, HAN L X, ZHANG H P, et al. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils[J]. Journal of Hazardous Materials, 2018, 357: 53-62. DOI: 10.1016/j.jhazmat.2018.05.066
doi: 10.1016/j.jhazmat.2018.05.066
[9]   PÉREZ-VALERA E, DE MELO RANGEL W, ELHOTTOVÁ D. Cattle manure application triggers short-term dominance of Acinetobacter in soil microbial communities[J]. Applied Soil Ecology, 2022, 176: 104466. DOI: 10.1016/j.apsoil.2022.104466
doi: 10.1016/j.apsoil.2022.104466
[10]   FANG H, WANG H F, CAI L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science & Technology, 2015, 49(2): 1095-1104. DOI: 10.1021/es504157v
doi: 10.1021/es504157v
[11]   CHEN Q L, AN X L, LI H, et al. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?[J]. Soil Biology and Biochemistry, 2017, 114: 229-237. DOI: 10.1016/j.soilbio.2017.07.022
doi: 10.1016/j.soilbio.2017.07.022
[12]   ZHU L, LIAN Y L, LIN D, et al. Insights into microbial contamination in multi-type manure-amended soils: the profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2022, 437: 129356. DOI: 10.1016/j.jhazmat.2022.129356
doi: 10.1016/j.jhazmat.2022.129356
[13]   LI J Y, CHEN Q L, LI H L, et al. Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils[J]. Environmental Pollution, 2020, 266: 115399. DOI: 10.1016/j.envpol.2020.115399
doi: 10.1016/j.envpol.2020.115399
[14]   BLAUSTEIN R A, HILL R L, MICALLEF S A, et al. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil[J]. Science of the Total Environment, 2016, 539: 583-591. DOI: 10.1016/j.scitotenv.2015.07.108
doi: 10.1016/j.scitotenv.2015.07.108
[15]   STOCKER M, YAKIREVICH A, GUBER A, et al. Functional evaluation of three manure-borne indicator bacteria release models with multiyear field experiment data[J]. Water, Air, & Soil Pollution, 2018, 229: 181. DOI: 10.1007/s11270-018-3807-0
doi: 10.1007/s11270-018-3807-0
[16]   庄俐,邹平,麻万诸,等.浙江省典型土壤类型整段标本的采集和制作[J].土壤,2022,54(6):1307-1312. DOI:10.13758/j.cnki.tr.2022.06.027
ZHUANG L, ZOU P, MA W Z, et al. Brief introduction of methods of collecting and making soil monoliths in Zhejiang Province[J]. Soils, 2022, 54(6): 1307-1312. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2022.06.027
[17]   武淑霞,刘宏斌,黄宏坤,等.我国畜禽养殖粪污产生量及其资源化分析[J].中国工程科学,2018,20(5):103-111. DOI:10.15302/J-SSCAE-2018.05.016
WU S X, LIU H B, HUANG H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Strategic Study of CAE, 2018, 20(5): 103-111. (in Chinese with English abstract)
doi: 10.15302/J-SSCAE-2018.05.016
[18]   陈国和,赵章金,顿雯静,等.浙江省2000年—2016年畜禽养殖业时空分布特征及对环境的影响[J].绍兴文理学院学报,2019,39(1):64-73. DOI:10.16169/j.issn.1008-293x.k.2019.07.009
CHEN G H, ZHAO Z J, DUN W J, et al. Temporal and spatial distribution of livestock and poultry industry and its impact on environment in Zhejiang Province from 2000 to 2016[J]. Journal of Shaoxing University, 2019, 39(1): 64-73. (in Chinese with English abstract)
doi: 10.16169/j.issn.1008-293x.k.2019.07.009
[19]   宣梦,许振成,吴根义,等.我国规模化畜禽养殖粪污资源化利用分析[J].农业资源与环境学报,2018,35(2):126-132. DOI:10.13254/j.jare.2017.0257
XUAN M, XU Z C, WU G Y, et al. Analysis of utilization of fecal resources in large-scale livestock and poultry breeding in China[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 126-132. (in Chinese with English abstract)
doi: 10.13254/j.jare.2017.0257
[20]   CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. DOI: 10.1093/bioinformatics/bty560
doi: 10.1093/bioinformatics/bty560
[21]   MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. DOI: 10.1093/bioinformatics/btr507
doi: 10.1093/bioinformatics/btr507
[22]   CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92/93: 1-10. DOI: 10.1016/j.envint.2016.03.026
doi: 10.1016/j.envint.2016.03.026
[23]   TIAN W, WANG L, LI Y, et al. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen[J]. Agriculture, Ecosystems & Environment, 2015, 213: 219-227. DOI: 10.1016/j.agee.2015.08.009
doi: 10.1016/j.agee.2015.08.009
[24]   HAN X M, HU H W, CHEN Q L, et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures[J]. Soil Biology and Biochemistry, 2018, 126: 91-102. DOI: 10.1016/j.soilbio.2018.08.018
doi: 10.1016/j.soilbio.2018.08.018
[25]   HU J L, LIN X G, WANG J H, et al. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer[J]. Journal of Soils and Sediments, 2011, 11(2): 271-280. DOI: 10.1007/s11368-010-0308-1
doi: 10.1007/s11368-010-0308-1
[26]   ZHANG H P, ZHANG Q K, SONG J J, et al. Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils[J]. Journal of Hazardous Materials, 2020, 396: 122618. DOI: 10.1016/j.jhazmat.2020.122618
doi: 10.1016/j.jhazmat.2020.122618
[27]   HEMBACH N, BIERBAUM G, SCHREIBER C, et al. Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: a molecular biology comparison[J]. Environmental Pollution, 2022, 313: 120128. DOI: 10.1016/j.envpol.2022.120128
doi: 10.1016/j.envpol.2022.120128
[28]   陈铭,丁秀荣,于艳华,等.慢性肝病患者合并解没食子酸链球菌血流感染的临床特征分析[J].北京医学,2021,43(7):628-631. DOI:10.15932/j.0253-9713.2021.07.010
CHEN M, DING X R, YU Y H, et al. Clinical characteristics of bloodstream infection of Streptococcus gallolyticus in patients with chronic liver disease[J]. Beijing Medical Journal, 2021, 43(7): 628-631. (in Chinese with English abstract)
doi: 10.15932/j.0253-9713.2021.07.010
[29]   张英,武淑霞,雷秋良,等.不同类型粪肥还田对土壤酶活性及微生物群落的影响[J].土壤,2022,54(6):1175-1184. DOI:10.13758/j.cnki.tr.2022.06.011
ZHANG Y, WU S X, LEI Q L, et al. Effects of different manures on soil enzyme activity and microbial community[J]. Soils, 2022, 54(6): 1175-1184. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2022.06.011
[30]   GU G Y, STRAWN L K, ZHENG J, et al. Diversity and dynamics of Salmonella enterica in water sources, poultry litters, and field soils amended with poultry litter in a major agricultural area of Virginia[J]. Frontiers in Microbiology, 2019, 10: 2868. DOI: 10.3389/fmicb.2019.02868
doi: 10.3389/fmicb.2019.02868
[31]   WANG H Z, ZHANG T X, WEI G, et al. Survival of Escherichia coli O157:H7 in soils under different land use types[J]. Environmental Science and Pollution Research, 2014, 21(1): 518-524. DOI: 10.1007/s11356-013-1938-9
doi: 10.1007/s11356-013-1938-9
[32]   MOYNIHAN E L, RICHARDS K G, BRENNAN F P, et al. Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition[J]. Applied Soil Ecology, 2015, 89: 76-84. DOI: 10.1016/j.apsoil.2015.01.011
doi: 10.1016/j.apsoil.2015.01.011
[33]   XING J J, WANG H Z, BROOKES P C, et al. Soil pH and microbial diversity constrain the survival of E. coli in soil[J]. Soil Biology and Biochemistry, 2019, 128: 139-149. DOI: 10.1016/j.soilbio.2018.10.013
doi: 10.1016/j.soilbio.2018.10.013
[34]   DENG Y, GUO X, WANG Y W, et al. Terrisporobacter petrolearius sp. nov., isolated from an oilfield petroleum reservoir[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(10): 3522-3526. DOI: 10.1099/ijsem.0.000450
doi: 10.1099/ijsem.0.000450
[35]   朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学:生命科学,2021,51(1):1-11. DOI:10.1360/SSV-2020-0320
ZHU Y G, PENG J J, WEI Z, et al. Linking the soil microbiome to soil health[J]. Scientia Sinica (Vitae), 2021, 51(1): 1-11. (in Chinese with English abstract)
doi: 10.1360/SSV-2020-0320
[1] Tong QI,Sheng TANG,Jingjie ZHOU,Qingxu MA,Lianghuan WU. Effects of long-term non-flooding plastic film mulching and application of coated urea on rice yield, nitrogen use efficiency and soil nutrients[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 109-122.
[2] Simin CHEN,Xinzhe LU,Chunlei HUANG,Jiachun SHI,Jianming XU. Study on safe utilization technology model of high acidity and mild cadmium-contaminated paddy fields: a case of the cadmium-contaminated pilot area in Yongkang City of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 853-862.
[3] Linze YANG,Huixia SHOU. Effects of deoxymugineic acid from rice root exudates on bacterial community composition in rhizosphere and root endosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 376-388.
[4] Lyuyang SHAO,Xi CHEN,Chaofeng SHEN. Effect of remediation of polychlorinated biphenyls (PCBs) contaminated soil by combined treatment of nanoscale zero-valent iron and PCBs-degrading strain[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 389-397.
[5] Wenfeng GONG,Zeying WANG,Jinliang LIU,Yu SUN,Xinxin YANG,Shuai WEI,Liping WEI. Characteristics of the rhizosphere bacterial community of endangered plant Cupressus gigantea in Tibet[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 241-252.
[6] Xiaoying GUO,Xiaoxia LIU,Jian WANG,Yuemin NI,Mingzhu LENG,Wuzhong NI. Fertility status and phosphorus loss risk of vegetable field soils in Xitiaoxi watershed[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 85-95.
[7] Wanzhu MA,Kangying ZHU,Zhiqing ZHUO,Mingkui ZHANG. Genesis characteristics and taxonomic classification of island hilly soils in Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 96-104.
[8] Mingxia WEN,Hui XI,Shaohui WU,Na LI,Xijing CHEN. Effects of drip fertigation on production effect of mountain citrus orchard[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 566-572.
[9] Bei XIAO,Zhenghai WANG,Jinli SHEN,Cong ZHOU. Migration and enrichment characteristics of heavy metal elements in soil-plant system in Qianjiadian uranium mining area of Inner Mongolia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 625-634.
[10] Qiaogang YU,Zhengchen HUANG,Jing YE,Wanchun SUN,Hui LIN,Qiang WANG,Feng WANG,Junwei MA. Effects of combined biochemical inhibitors on nitrogen transformation and rice growth in paddy fields[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 635-643.
[11] Qing WAN,Xiaoyu YANG,Dan WU,Qichun ZHANG. Effects of returning seabuckthorn fruit residue into field on paddy soil properties, greenhouse gas emissions and microbial numbers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 483-492.
[12] Xingli JIN,Jintao HE,Yongliang CAI,Kunfeng LI,Leyang CHEN,Xingmeng LU,Yongqi SHAO. Investigation on soil pathogenic microbes and their microecology in Zhejiang mulberry fields[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 493-503.
[13] Yilin DU, Jiabin LIANG, Xinyu GUO, Jipeng LUO, Yuankun LIU, Qili MU, Tingqiang LI. Effects of elevated atmospheric carbon dioxide concentration on nitrification of farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 504-516.
[14] Xiaodong DENG,Hongquan WANG. Recent advances on algorithms and applications of soil moisture retrieval from microwave remote sensing[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 289-302.
[15] Longda GONG,Kai CHEN,Dan LI,Mei CAI,Jingwen WANG,Qichun ZHANG. Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 359-368.