Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 389-397    DOI: 10.3785/j.issn.1008-9209.2021.11.011
Resource utilization & environmental protection     
Effect of remediation of polychlorinated biphenyls (PCBs) contaminated soil by combined treatment of nanoscale zero-valent iron and PCBs-degrading strain
Lyuyang SHAO1(),Xi CHEN2(),Chaofeng SHEN3()
1.Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan, China
2.Shanghai Chemical Engineering Monitoring Station for Environment Protection, Shanghai 200050, China
3.College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(3777KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Polychlorinated biphenyls (PCBs) are typical pollutants in soil. Nanoscale zero-valent iron (nZVI) can effectively dechlorinate high-chlorinated PCBs into low-chlorinated PCBs which can be more easily degraded by microorganisms. In this study, soil samples contaminated by PCBs were collected from an e-waste recycling site in Taizhou, Zhejiang Province. The remediation of combined nZVI and PCBs-degrading strain Rhodococcus pyridinovorans R04 was carried out to investigate the removal effect of PCBs in soil. The results showed that the combined treatment of nZVI and degrading strain R04 had better effects than the treatment of nZVI or R04 alone in removing PCBs or various chlorinated PCB congeners in soil. After combined treatment with nZVI and degrading strain R04 for 32 d, the removal rate of PCBs in soil reached 59.4%, which was higher than 46.1% of nZVI treatment and 34.4% of degrading strain R04 treatment (P<0.05). Therefore, the combination of nZVI and degrading bacteria in the remediation of PCBs contaminated soil has good application potential.



Key wordspolychlorinated biphenyls (PCBs)      dechlorination      nanoscale zero-valent iron (nZVI)      degrading bacteria      remediation of soil pollution     
Received: 01 November 2021      Published: 25 June 2023
CLC:  X53  
Corresponding Authors: Chaofeng SHEN     E-mail: 736037122@qq.com;ysxzt@zju.edu.cn
Cite this article:

Lyuyang SHAO,Xi CHEN,Chaofeng SHEN. Effect of remediation of polychlorinated biphenyls (PCBs) contaminated soil by combined treatment of nanoscale zero-valent iron and PCBs-degrading strain. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 389-397.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.11.011     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/389


纳米零价铁与降解菌联合修复多氯联苯污染土壤效果的研究

多氯联苯(polychlorinated biphenyls, PCBs)是土壤中典型的污染物,纳米零价铁(nanoscale zero-valent iron, nZVI)可以高效地将高氯代PCBs脱氯成更容易被微生物降解的低氯代PCBs。本研究从浙江省台州市某电子垃圾拆解场采集了受PCBs污染的土壤样品,采用nZVI与PCBs降解菌嗜吡啶红球菌(Rhodococcus pyridinovorans)R04开展联合修复研究,考察其对PCBs的去除效果。结果表明:nZVI与降解菌R04联合处理对土壤中PCBs总量及各氯代PCB同类物的去除效果均优于nZVI或R04单独处理;nZVI与降解菌R04联合处理32 d时,土壤中PCBs去除率达59.4%,高于单独使用nZVI的去除率(46.1%),也显著高于单独使用降解菌R04的去除率(34.4%,P<0.05)。因此,nZVI与降解菌联合修复PCBs污染土壤具有较好的应用潜力。


关键词: 多氯联苯,  脱氯,  纳米零价铁,  降解菌,  土壤污染修复 
Fig. 1 Transmission electron microscopy image (A) and X-ray diffraction pattern (B) of nZVI

组别

Group

土样质量

Soil sample

mass/g

去离子水

Deionized

water/mL

nZVI投加量

nZVI dosage/g

T03.0300
T13.0301.0
T23.0300.5
T33.0300.1
Table 1 Soil sample mass and nZVI dosage

组别

Group

土样质量

Soil sample

mass/g

去离子水

Deionized

water/mL

R04投加量

R04 dosage/

(CFU/g)

T03.0300
R04(2×108 CFU/g)3.0302×108
R04(1×109 CFU/g)3.0301×109
R04(-)3.030
Table 2 Soil sample mass and degrading strain R04 dosage

组别

Group

土样质量

Soil sample mass/g

去离子水

Deionized water/mL

nZVI投加量

nZVI dosage/g

R04投加量

R04 dosage/(CFU/g)

T03.03000
R04(1×109 CFU/g)3.03001×109
R04(-)3.0300
nZVI(+)3.03010
nZVI(+)+R04(1×109 CFU/g)3.03011×109
nZVI(+)+R04(-)3.0301
Table 3 Soil sample mass and dosages of nZVI and degrading strain R04
Fig. 2 Effects of nZVI dosages on the removal effect of PCBs in soilThe meanings of T0-T3 are the same as in Table 1, and the same as below. Different lowercase letters above bars indicate significant differences among different treatments at the same time at the 0.05 probability level, and the same as Figs. 4 and 5.
Fig. 3 Effects of nZVI dosages on the removal effect of each chlorinated PCB congener in soil on 32 dDifferent lowercase letters above bars indicate significant differences among different treatments of the same compound at the 0.05 probability level, and the same as Fig. 6.
Fig. 4 Effects of degrading strain R04 dosage on the removal effect of PCBs in soil
Fig. 5 Effects of different treatments on the removal effect of PCBs in soil
Fig. 6 Effects of different treatments on each chlorinated PCB congener residual concentration in contaminated soil
[1]   张雪,刘维涛,梁丽琛,等.多氯联苯(PCBs)污染土壤的生物修复[J].农业环境科学学报,2016,35(1):1-11. DOI:10.11654/jaes.2016.01.001
ZHANG X, LIU W T, LIANG L C, et al. Bioremediation of polychlorinated biphenyls (PCBs) contaminated soil[J]. Journal of Agricultural Environmental Sciences, 2016, 35(1): 1-11. (in Chinese with English abstract)
doi: 10.11654/jaes.2016.01.001
[2]   联合国环境规划署,世界卫生组织.环境卫生基准(2):多氯联苯和多氯三联苯[M].北京:中国环境科学出版社,1987.
United Nations Environment Programme, World Health Organization. Environmental Health Benchmarks (2): PCBs and PCTs[M]. Beijing: China Environmental Science Press, 1987. (in Chinese)
[3]   BEYER A, BIZIUK M. Environmental fate and global distribution of polychlorinated biphenyls[M]//WHITACRE D M. Reviews of Environmental Contamination and Toxicology. Vol. 201. Boston, MA, USA: Springer, 2009: 137-158. DOI: 10.1007/978-1-4419-0032-6_5
doi: 10.1007/978-1-4419-0032-6_5
[4]   SHEN C F, CHEN Y X, HUANG S B, et al. Dioxin-like compounds in agricultural soils near e-waste recycling sites from Taizhou area, China: chemical and bioanalytical charac-terization[J]. Environmental International, 2009, 35(1): 50-55. DOI: 10.1016/j.envint.2008.07.005
doi: 10.1016/j.envint.2008.07.005
[5]   储少岗,徐晓白,童逸平.多氯联苯在典型污染地区环境中的分布及其环境行为[J].环境科学学报,1995,15(4):423-432.
CHU S G, XU X B, TONG Y P. Transport and distribution of polychlorinated biphenyls in a pollutes area[J]. Acta Scientiae Circumstantiae, 1995, 15(4): 423-432. (in Chinese with English abstract)
[6]   胡劲召,陈少瑾,吴双桃,等.多氯联苯污染及其处理方法研究进展[J].江西化工,2004(4):1-5. DOI:10.3969/j.issn.1008-3103.2004.04.001
HU J Z, CHEN S J, WU S T, et al. Advances in disposal methods for polychlorinated biphenyls[J]. Jiangxi Chemical Industry, 2004(4): 1-5. (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-3103.2004.04.001
[7]   孙仲平,吴乃瑾,魏文侠,等.电子供体刺激下厌氧微生物对1,2-二氯乙烷的降解效果[J].环境科学研究,2018,31(8):1431-1438. DOI:10.13198/j.issn.1001-6929.2018.05.20
SUN Z P, WU N J, WEI W X, et al. Effect of anaerobic microbial degradation of 1,2-dichloroethane stimulated by electron donor[J]. Research of Environmental Sciences, 2018, 31(8): 1431-1438. (in Chinese with English abstract)
doi: 10.13198/j.issn.1001-6929.2018.05.20
[8]   吴双桃,朱慧.零价金属对氯代有机物还原脱氯的研究进展[J].河北化工,2008,31(6):20-22, 27. DOI:10.3969/j.issn.1003-5059.2008.06.009
WU S T, ZHU H. Review on study of reductive dechlorina-tion of chlorinated organics by zero-valent metal[J]. Hebei Chemical Industry, 2008, 31(6): 20-22, 27. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-5059.2008.06.009
[9]   苏锦,陈祖亮.纳米铁技术在环境修复中应用的研究进展[J].能源与环境,2014(1):17-19. DOI:10.3969/j.issn.1672-9064.2014.01.008
SU J, CHEN Z L. Research progress on the application of nano-iron technology in environmental remediation[J]. Energy and Environment, 2014(1): 17-19. (in Chinese)
doi: 10.3969/j.issn.1672-9064.2014.01.008
[10]   WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2154-2156. DOI: 10.1021/es970039c
doi: 10.1021/es970039c
[11]   陈少瑾,梁贺升.零价铁还原脱氯污染土壤中PCBs的实验研究[J].生态环境学报,2009,18(1):193-196. DOI:10.16258/j.cnki.1674-5906.2009.01.007
CHEN S J, LIANG H S. Experimental study of the dechlori-nation of PCBs in polluted soils by zero valent iron[J]. Ecology and Environmental Sciences, 2009, 18(1): 193-196. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2009.01.007
[12]   PIEPER D H, SEEGER M. Bacterial metabolism of polychlorinated biphenyls[J]. Journal of Molecular Micro-biology and Biotechnology, 2008, 15(2/3): 121-138. DOI: 10.1159/000121325
doi: 10.1159/000121325
[13]   胡金星,章林琼,韦凤琴,等.好氧生物泥浆法降解土壤中三氯代多氯联苯的影响因素分析[J].环境科学学报,2020,40(9):3382-3388. DOI:10.13671/j.hjkxxb.2020.0179
HU J X, ZHANG L Q, WEI F Q, et al. Influence factors of aerobic bioslurry treatment for the degradation of tri-chlorinated biphenyls in soil[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3382-3388. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2020.0179
[14]   KARRI S, SIEERA-ALVAREZ R, FIELD J A. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge[J]. Biotechnology and Bioen-gineering, 2005, 92(7): 810-819. DOI: 10.1002/bit.20623
doi: 10.1002/bit.20623
[15]   CHEN X, YAO X Y, YU C N, et al. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles[J]. Environmental Science and Pollution Research, 2014, 21(7): 5201-5210. DOI: 10.1007/s11356-013-2089-8
doi: 10.1007/s11356-013-2089-8
[16]   杨秀清,席婧雯.联苯培养条件下红球菌R04转录表达和苯甲酸代谢途径解析[J].微生物学报,2015,55(7):851-862. DOI:10.13343/j.cnki.wsxb.20140522
YANG X Q, XI J W. Transcriptomic and benzoate metabolic pathways of Rhodococcus sp. R04 cultured in biphenyl[J]. Acta Microbiologica Sinica, 2015, 55(7): 851-862. (in Chinese with English abstract)
doi: 10.13343/j.cnki.wsxb.20140522
[17]   United States Environmental Protection Agency (EPA). Method 8082A: Polychlorinated Biphenyls (PCBs) by Gas Chromatography [S]. EPA: [s. n.], 2007.
[18]   陈杏娟,郭俊,许玫英.微生物协同Fe0氧化的环境修复作用研究进展[J].微生物学报,2011,51(9):1146-1151. DOI:10.13343/j.cnki.wsxb.2011.09.001
CHEN X J, GUO J, XU M Y. Advance in the integrated microbial-Fe0 treatment processes for environmental reme-diation: a review[J]. Acta Microbiologica Sinica, 2011, 51(9): 1146-1151. (in Chinese with English abstract)
doi: 10.13343/j.cnki.wsxb.2011.09.001
[19]   WEATHERS L J, PARKIN G F, ALVAREZ P J. Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture[J]. Environ-mental Science & Technology. 1997, 31(3): 880-885. DOI: 10.1021/es960582d
doi: 10.1021/es960582d
[20]   HU C H, ZHANG Y C, TANG X D, et al. PCB biode-gradation and bphA1 gene expression induced by salicylic acid and biphenyl with Pseudomonas fluorescence P2W and Ralstonia eutropha H850[J]. Polish Journal of Environ-mental Studies, 2014, 23(5): 1591-1598.
[21]   陈涛,尹敏敏,司雄元,等.纳米Fe0协同微生物对PCB77的降解研究[J].生态环境学报,2011,20(2):317-322. DOI:10.16258/j.cnki.1674-5906.2011.02.003
CHEN T, YIN M M, SI X Y, et al. Degradation of PCB77 by nanoscale zero-valent iron and microorganism integrated treatment system[J]. Ecology and Environmental Sciences, 2011, 20(2): 317-322. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2011.02.003
[22]   陈涛.纳米Fe0/Fe3O4协同微生物对PCB77的降解研究[D].安徽,合肥:安徽农业大学,2011. DOI:10.3969/j.issn.1674-5906.2011.02.019
CHEN T. Degradation of 3,3 ´ ,4,4´-tetrachlorobiphenyl by nanoscale Fe0/Fe3O4 and microorganism integrated treatment system[D]. Hefei, Anhui: Anhui Agricultural University, 2011. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-5906.2011.02.019
[23]   LAMPRON K J, CHIU P C, CHA D K. Reductive dehalo-genation of chlorinated ethenes with elemental iron: the role of microorganisms[J]. Water Research, 2001, 35(13): 3077-3084. DOI: 10.1016/s0043-1354(01)00017-3
doi: 10.1016/s0043-1354(01)00017-3
[24]   LEE T, TOKUNAGE T, SUYAMA A, et al. Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron[J]. Journal of Bioscience and Bioengineering, 2001, 92(5): 453-458. DOI: 10.1016/S1389-1723(01)80295-4
doi: 10.1016/S1389-1723(01)80295-4
[25]   PAKNIKAR K M, NAGPAL V, PETHKAR A V, et al. Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers[J]. Science and Technology of Advanced Materials, 2005, 6(3/4): 370-374. DOI: 10.1016/j.stam.2005.02.016
doi: 10.1016/j.stam.2005.02.016
[26]   YAN W L, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental cleanup: recent developments and future outlook[J]. Environmental Science: Processes & Impacts, 2013, 15(1): 63-77. DOI: 10.1039/c2em30691c
doi: 10.1039/c2em30691c
[27]   SHEKARRIZ M, TAGHIPOOR S, ALIAKBARI F H, et al. Optimal synthesis and nitrate and mercury removal ability of microemulsion-made iron nanoparticles[J]. International Journal of Nanoparticles, 2010, 3(2): 123-137. DOI: 10.1504/ijnp.2010.034846
doi: 10.1504/ijnp.2010.034846
[28]   ZHANG Y, LI Y M, LI J F, et al. Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay[J]. Chemical Engineering Journal, 2011, 171(2): 526-531. DOI: 10.1016/j.cej.2011.04.022
doi: 10.1016/j.cej.2011.04.022
[29]   王鹏,王义东,柳听义.球磨法制备纳米零价铁的研究进展[J].环境化学,2021,40(9):2924-2933. DOI:10.7524/j.issn.0254-6108.2020050601
WANG P, WANG Y D, LIU T Y. Research progress of preparation of nano zerovalent iron by ball milling[J]. Environ-mental Chemistry, 2021, 40(9): 2924-2933. (in Chinese with English abstract)
doi: 10.7524/j.issn.0254-6108.2020050601
[30]   PATNI S, BHATIA A L. Nanotechnology: a double-edged sword[J]. Asian Journal of Experimental Sciences, 2008, 22(2): 153-166.
[31]   王萌,陈世宝,马义兵.纳米材料在污染环境修复中的生态毒性研究进展[J].应用生态学报,2010,21(11):2986-2991. DOI:10.13287/j.1001-9332.2010.0395
WANG M, CHEN S B, MA Y B. Application of nanoscale material in environmental remediation and its eco-environ-mental toxicity assessment: a review[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2986-2991. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.2010.0395
No related articles found!