Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (4): 483-492    DOI: 10.3785/j.issn.1008-9209.2021.06.291
Resource utilization & environmental protection     
Effects of returning seabuckthorn fruit residue into field on paddy soil properties, greenhouse gas emissions and microbial numbers
Qing WAN1(),Xiaoyu YANG1,Dan WU2,Qichun ZHANG1()
1.Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(2538KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the effects of seabuckthorn fruit residue on soil physicochemical properties, greenhouse gas (CO2, CH4, N2O) emissions, and the microbial numbers, a 28-day soil pot experiment was conducted. Three groups of materials were used, including seabuckthorn fruit residue (R), biochar (B), and biological ceramsite (T) in the experiment, and a natural culture was used as the control group (CK). The results showed that the seabuckthorn fruit residue significantly promoted the contents of soil nutrients such as total carbon, total nitrogen, and available potassium, and the average increase rates were 16.31%, 14.99%, and 46.15%, respectively. Besides, the soil pH was also enhanced from 0.25 to 0.69. The microbial numbers in the soils treated with seabuckthorn fruit residue were promoted significantly. The average growth rate of microorganisms in the first 14 days was 335.6% higher than that of the control. The CO2 emissions and global warming potential (GWP) with the treatment of seabuckthorn fruit residue were higher of biochar (R) treatment, while the CH4 and N2O emissions were both lower than those of biochar (B) and biological ceramsite (T) treatments. In general, the seabuckthorn fruit residue showed relatively high returning value, but its risk of greenhouse gas emission should also be considered. This study can provide some references for the practice of returning seabuckthorn fruit residue into the field.



Key wordsseabuckthorn fruit residue      biochar      biological ceramsite      microbial numbers      greenhouse gases      soil physicochemical properties     
Received: 29 June 2021      Published: 03 September 2022
CLC:  X 172  
Corresponding Authors: Qichun ZHANG     E-mail: 3170100475@zju.edu.cn;qczhang@zju.edu.cn
Cite this article:

Qing WAN,Xiaoyu YANG,Dan WU,Qichun ZHANG. Effects of returning seabuckthorn fruit residue into field on paddy soil properties, greenhouse gas emissions and microbial numbers. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 483-492.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.06.291     OR     https://www.zjujournals.com/agr/Y2022/V48/I4/483


沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响

采用28 d的土壤培养试验,选用沙棘果渣(R)、生物质炭(B)和生物陶粒(T)3组材料,以自然培养组作为对照(CK),探讨沙棘果渣对土壤理化性质、温室气体(CO2、CH4和N2O)排放和微生物数量等方面的影响。结果表明:沙棘果渣能够显著提升土壤中全碳、全氮、速效钾等养分的含量,平均提升率分别为16.31%、14.99%、46.15%;对土壤pH也存在一定的提升效果,提升范围为0.25~0.69。沙棘果渣还田后土壤微生物丰度显著升高,其中前14 d微生物数量较对照平均增长335.6%。对不同材料还田后的温室气体排放和全球增温潜势分析表明,与生物质炭和生物陶粒相比,沙棘果渣还田的CO2排放量和全球增温潜势显著较高,但其CH4排放量较小且可以显著降低N2O的排放量。总体来看,沙棘果渣具有较高的还田价值,但需要考虑对温室气体排放的风险,本研究可为沙棘果渣的农业还田利用提供一定参考。


关键词: 沙棘果渣,  生物质炭,  生物陶粒,  微生物数量,  温室气体,  土壤理化性质 

类型

Type

pHw(全碳) Total C content/(g/kg)w(全氮) Total N content/(g/kg)

w(硝态氮)

NO3-N

content/(mg/kg)

w(铵态氮)

NH4+-N content/(mg/kg)

w(有效磷)

Available P content/(mg/kg)

w(速效钾) Available K content/(mg/kg)w(DOC)/(g/kg)w(DON)/(g/kg)

水稻土

Paddy soil

5.369.580.9337.856.496.82102.580.060.03
Table 1 Basic physicochemical properties of test soil

材料

Material

w(全氮)

Total N content/%

w(全碳)

Total C content/%

碳氮比

C/N ratio

w(全氢)

Total H content/%

w(全硫)

Total S content/%

珍珠岩

Pearlite

0.130.211.570.140.01

沙棘果渣

Seabuckthorn fruit residue

1.2553.4842.795.270.05

生物质炭

Biochar

1.6235.0521.692.520.02

生物陶粒

Biological ceramsite

0.054.5595.100.842.01
Table 2 Main properties of the applied materials
Fig. 1 Effects of different treatments on total C, total N and C/N ratio of soilR: Seabuckthorn fruit residue treatment; B: Biochar treatment; T: Biological ceramsite treatment; CK: Blank control. Different lowercase letters in the figures indicate significant differences among different treatments at the same incubation time at the 0.05 probability level. The same as below.
Fig. 2 Effects of different treatments on DOC, DON, NO3-N and NH4+-N of soil
Fig. 3 Effects of different treatments on soil pH
Fig. 4 Effects of different treatments on available P, available K, total H and total S of soil
Fig. 5 Effects of different treatments on CO2, CH4 and N2O emission rates and cumulative emission amounts of soilDifferent lowercase letters above the histogram indicate significant differences among different treatments at the 0.05 probability level, and the same as below.
Fig. 6 Effects of different treatments on global warming potential
Fig. 7 Effects of different treatments on soil microbial numbers
[1]   LÜ R S. Seabuckthorn: A Multipurpose Plant Species for Fragile Mountains[M]. 20th ed. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1992. DOI:10.53055/ICMOD.129
doi: 10.53055/ICMOD.129
[2]   杨小燕.准格尔旗沙棘产业发展研究[D].呼和浩特:内蒙古农业大学,2016. DOI:10.3969/j.issn.1007-6921.2015.22.005
YANG X Y. Jungar banner seabuckthorn industry development research[D]. Hohhot: Inner Mongolia Agricultural University, 2016. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-6921.2015.22.005
[3]   齐虹凌,于泽源,李兴国.沙棘研究概述[J].沙棘,2005,18(2):37-41.
QI H L, YU Z Y, LI X G. Overview of seabuckthorn research[J]. Hippophae, 2005, 18(2): 37-41. (in Chinese)
[4]   刘瑞,张弘弛.沙棘化学成分的研究进展[J].山西大同大学学报(自然科学版),2009,25(2):43-44, 54.
LIU R, ZHANG H C. Advances in the research of the chemical components of seabuckthorn[J]. Journal of Shanxi Datong University (Natural Science), 2009, 25(2): 43-44, 54. (in Chinese with English abstract)
[5]   帕塔尔·尼牙孜.沙棘果渣黄酮软胶囊产品开发研究[D].乌鲁木齐:新疆大学,2016.
PATAR N. Study on development of producing flavones soft capsule from seabuckthorn residues[D]. Urumqi: Xinjiang University, 2016. (in Chinese with English abstract)
[6]   郭兴.利用沙棘果渣栽培黑木耳的研究[J].林业科技,2017,42(1):42-44. DOI:10.3969/j.issn.1001-9499.2017.01.015
GUO X. Study on the cultivation of black fungus with seabuckthorn fruit residue[J]. Forestry Science and Technology, 2017, 42(1): 42-44. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-9499.2017.01.015
[7]   SHAKER M M, AL-BEITAWI N A, BLÁHA J, et al. The effect of seabuckthorn (Hippophae rhamnoides L.) fruit residues on performance and egg quality of laying hens[J]. Journal of Applied Animal Research, 2018, 46(1): 422-426. DOI:10.1080/09712119.2017.1324456
doi: 10.1080/09712119.2017.1324456
[8]   朱丹丹.沙棘果渣系列产品加工工艺研究[D].哈尔滨:东北农业大学,2018.
ZHU D D. Study on the processing technology of a series of seabuckthorn pumace[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese with English abstract)
[9]   刘维汐,张存莉.沙棘果渣膳食纤维咀嚼片的工艺[J].食品工业,2019,40(10):120-123.
LIU W X, ZHANG C L. The technology of seabuckthorn residue dietary fiber chewable tablets[J]. The Food Industry, 2019, 40(10): 120-123. (in Chinese with English abstract)
[10]   鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000:81-83,106-107.
BAO S D. Soil and Agricultural Chemistry Analysis[M].3rd ed. Beijing: China Agricultural Press, 2000: 81-83, 106-107. (in Chinese)
[11]   陈智伟.生物质炭和磷肥施用对土壤养分、小白菜生物量和植株养分含量的影响[D].福州:福建师范大学,2018. DOI:10.5152/j.aott.2021.20168
CHEN Z W. Effects of biochar and phosphate fertilizer application on soil nutrients, biomass and plant nutrient content of pakchoi[D]. Fuzhou: Fujian Normal University, 2018. (in Chinese with English abstract)
doi: 10.5152/j.aott.2021.20168
[12]   TRINSOUTROT I, RECOUS S, BENTZ B, et al. Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions[J]. Soil Science Society of America Journal, 2000, 64(3): 918-926. DOI:10.2136/sssaj2000.643918x
doi: 10.2136/sssaj2000.643918x
[13]   柳敏,宇万太,姜子绍,等.土壤溶解性有机碳(DOC)的影响因子及生态效应[J].土壤通报,2007,38(4):758-764. DOI:10.19336/j.cnki.trtb.2007.04.030
LIU M, YU W T, JIANG Z S, et al. Influencing factors and ecological effects of dissolved organic carbon in soil[J]. Chinese Journal of Soil Science, 2007, 38(4): 758-764. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2007.04.030
[14]   张亚亚,李军,郭颖,等.土壤可溶性有机氮的研究进展[J].生态学杂志,2016,35(6):1661-1669. DOI:10.13292/j.1000-4890.201606.004
ZHANG Y Y, LI J, GUO Y, et al. Soluble organic nitrogen in soil: a review[J]. Chinese Journal of Ecology, 2016, 35(6): 1661-1669. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.201606.004
[15]   董容莉.秸秆添加对不同性质、耕作类型土壤有机质矿化及其组分的影响[D].武汉:华中农业大学,2019.
DONG R L. Effects of straw addition on mineralization and components of organic matter in soils with different properties and tillage types[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese with English abstract)
[16]   周静.内源性的土壤可利用性有机质对土壤激发效应的影响[D].上海:华东师范大学,2020. DOI:10.17521/cjpe.2019.0317
ZHOU J. Influence of native soil available organic matter on soil priming effects[D].Shanghai: East China Normal University, 2020. (in Chinese with English abstract)
doi: 10.17521/cjpe.2019.0317
[17]   CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2356-2367. DOI:10.1111/gcb.12475
doi: 10.1111/gcb.12475
[18]   付琳琳,蔺海红,李恋卿,等.生物质炭对稻田土壤有机碳组分的持效影响[J].土壤通报,2013,44(6):1379-1384. DOI:10.19336/j.cnki.trtb.2013.06.017
FU L L, LIN H H, LI L Q, et al. Persistent effects of biochar application on organic carbon fractions of paddy soil[J]. Chinese Journal of Soil Science, 2013, 44(6):1379-1384. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2013.06.017
[19]   贺纪正,张丽梅.土壤氮素转化的关键微生物过程及机制[J].微生物学通报,2013,40(1):98-108. DOI:10.13344/j.microbiol.china.2013.01.004
HE J Z, ZHANG L M. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 2013, 40(1): 98-108. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.2013.01.004
[20]   邱丽丽,李增强,徐基胜,等.生物质炭和秸秆施用对黄褐土生化性质及小麦产量的影响[J].土壤,2021,53(3):475-482. DOI:10.13758/j.cnki.tr.2021.03.005
QIU L L, LI Z Q, XU J S, et al. Effects of biochar and straw application on soil biochemical properties and wheat yield in yellow-cinnamon soil[J]. Soils, 2021, 53(3): 475-482. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2021.03.005
[21]   丛日环,张丽,鲁艳红,等.添加不同外源氮对长期秸秆还田土壤中氮素转化的影响[J].植物营养与肥料学报,2019,25(7):1107-1114. DOI:10.11674/zwyf.18295
CONG R H, ZHANG L, LU Y H, et al. Effect of adding different exogenous nitrogen sources on nitrogen transformation in long-term straw incorporated soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1107-1114. (in Chinese with English abstract)
doi: 10.11674/zwyf.18295
[22]   CASTELLS E, PEÑUELAS J, VALENTINE D W. Influence of the phenolic compound bearing species Ledum palustre on soil N cycling in a boreal hardwood forest[J]. Plant and Soil, 2003, 251(1): 155-166. DOI:10.1023/A:1022923114577
doi: 10.1023/A:1022923114577
[23]   CLOUGH T J, CONDRON L M, KAMMANN C, et al. A review of biochar and soil nitrogen dynamics[J]. Agronomy, 2013, 3(2): 275-293. DOI:10.3390/agronomy3020275
doi: 10.3390/agronomy3020275
[24]   方媛瑗,刘玲花,吴雷祥,等.5种填料对污水中氮磷的吸附特性研究[J].应用化工,2016,45(9):1619-1623. DOI:10.16581/j.cnki.issn1671-3206.20160615.048
FANG Y Y, LIU L H, WU L X, et al. Study on the adsorption characteristics of nitrogen and phosphorous on five substrates[J]. Applied Chemical Industry, 2016, 45(9): 1619-1623. (in Chinese with English abstract)
doi: 10.16581/j.cnki.issn1671-3206.20160615.048
[25]   WANG Y F, TANG C X, WU J J, et al. Impact of organic matter addition on pH change of paddy soils[J]. Journal of Soils and Sediments, 2013, 13(1): 12-23. DOI:10.1007/s11368-012-0578-x
doi: 10.1007/s11368-012-0578-x
[26]   XU J M, TANG C, CHEN Z L. The role of plant residues in pH change of acid soils differing in initial pH[J]. Soil Biology and Biochemistry, 2006, 38(4): 709-719. DOI:10.1016/j.soilbio.2005.06.022
doi: 10.1016/j.soilbio.2005.06.022
[27]   李峰,周方亮,黄雅楠,等.紫云英和秸秆还田对土壤肥力性状的影响[J].中国土壤与肥料,2020(3):75-81. DOI:10.11838/sfsc.1673-6257.19202
LI F, ZHOU F L, HUANG Y N, et al. Effects of Chinese milk vetch and straw returning on soil fertility characters[J]. Soil and Fertilizer Sciences in China, 2020(3): 75-81. (in Chinese with English abstract)
doi: 10.11838/sfsc.1673-6257.19202
[28]   CHEN G C, HE Z L, HUANG C Y. Microbial biomass phosphorus and its significance in predicting phosphorus availability in red soils[J]. Communications in Soil Science and Plant Analysis, 2000, 31(5/6): 655-667. DOI:10.1080/00103620009370467
doi: 10.1080/00103620009370467
[29]   LEVESQUE M, SCHNITZER M. Organo-metallic interactions in soils: 6. Preparation and properties of fulvic acid-metal phosphates[J]. Soil Science, 1967, 103(3): 183-190. DOI:10.1097/00010694-196703000-00006
doi: 10.1097/00010694-196703000-00006
[30]   王立革,孙晓姝,王媛,等.秸秆还田及钾肥减量对设施黄瓜钾钙镁含量和土壤钾形态的影响[J].山西农业科学,2021,49(4):461-466. DOI:10.3969/j.issn.1002-2481.2021.04.13
WANG L G, SUN X S, WANG Y, et al. Effect of straw returning and potassium fertilizer reduction on potassium, calcium, magnesium contents of cucumber in protected cultivation and potassium forms of soil[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(4): 461-466. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2481.2021.04.13
[31]   WANG L, XUE C, NIE X X, et al. Effects of biochar application on soil potassium dynamics and crop uptake[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(5): 635-643. DOI:10.1002/jpln.201700528
doi: 10.1002/jpln.201700528
[32]   SINGH J S, GUPTA S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Botanical Review, 1997, 43(4): 449-528.
[33]   刘本娟,谢祖彬,刘琦,等.生物质炭引起的土壤碳激发效应与土壤理化特性的相关性[J].土壤,2021,53(2):343-353. DOI:10.13758/j.cnki.tr.2021.02.018
LIU B J, XIE Z B, LIU Q, et al. Correlation between biochar-induced carbon priming effect in soils and soil physiochemical properties[J]. Soils, 2021, 53(2): 343-353. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2021.02.018
[34]   SHAHBAZ M, KUZYAKOV Y, SANAULLAH M, et al. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds[J]. Biology and Fertility of Soils, 2017, 53(3): 287-301. DOI:10.1007/s00374-016-1174-9
doi: 10.1007/s00374-016-1174-9
[35]   刘杰云,沈健林,邱虎森,等.生物质炭添加对农田温室气体净排放的影响综述[J].农业环境科学学报,2015,34(2):205-212. DOI:10.11654/jaes.2015.02.001
LIU J Y, SHEN J L, QIU H S, et al. Effects of biochar amendments on net emissions of greenhouse gases from croplands: a review[J]. Journal of Agro-Environment Science, 2015, 34(2): 205-212. (in Chinese with English abstract)
doi: 10.11654/jaes.2015.02.001
[36]   李赟.模拟增温与氮富集对土壤激发效应的影响及相关微生物变化[D].北京:北京林业大学,2020.
LI Y. Effects of simulated climate warming and nitrogen addition on soil priming effect and related microbial changes[D]. Beijing: Beijing Forestry University, 2020. (in Chinese with English abstract)
[37]   韩庆吉.自制陶粒基垂直流人工湿地处理生活污水的试验研究[D].西安:西安科技大学,2019.
HAN Q J. Experimental study on the treatment of domestic sewage by self made ceramsite-based vertical flow constructed wetland[D]. Xi’an: Xi’an University of Science and Technology, 2019. (in Chinese with English abstract)
[1] Yu FU,Peng ZHANG,Junli REN,Xiumei SUN,Qing HAO,Chenghu YANG. Effect of pyrolysis temperature on characteristics of heavy metals in different macroalgal biochars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 727-736.
[2] YANG Xing1,2, HUANG Huagang1,3*, WANG Ling, SHEN Yan, LU Kouping, HAN Xuebo, WANG Hailong. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 245-255.
[3] ZHANG Dong, LIU Xingyuan, ZHAO Hongting. Research progress in effects of biochar on transport of inorganic pollutants in soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 451-459.
[4] LAN Tian, CHU Yingchao, ZHANG Lingling, ZHAO Wen, PAN Yunzhou, ZHANG Jiawei, ZHU Zhiqiang, WU Weidong. Preparation of biochars from coconut fiber and coconut shell and their adsorption for Pb2+ in solution[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 469-477.
[5] ZHU Pan, YING Jieguan, PENG Shu’ang, JIANG Cuncang. Effects of biochar on the contents of potassium and phosphorus, and their leaching rates in red soil under simulated leaching condition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 478-484.
[6] Du Jingting, Sun Pengfei, Zhao Yuhua, Zhang Xin. Biosorption of chitosan-biochar microsphere for methyl red and biosorption enhancing effect of microsphere-microbe complex.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 228-236.
[7] Jiang Jianhui1, Zhang Jianying1,2*, Hu Hong2*. Sustainable fertilizer management for reduction of greenhouse gases emission in bamboo forest[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 85-93.
[8] ZHANG Mingkui, GU Guoping, WANG Yang. Degradation characteristic of different biochar materials in soil environments.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 329-335.
[9] ZHANG Yong song,CHAI Ru shan,FU Lili,LIU Li juan,DONG Hui fen. Greenhouse gas emissions from major agricultural activities in China and corresponding mitigation strategies .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 97-107.
[10] . Effects of biochar on properties of red soil and ryegrass growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 439-445.