综述 |
|
|
|
|
巯基砷在土水环境-植物体系中迁移转化与健康风险的研究进展 |
强震宇1(),江逸帆1,李刚2,韩永和3,管冬兴1() |
1.浙江大学环境与资源学院, 浙江 杭州 310058 2.中国科学院城市环境研究所, 福建 厦门 361021 3.福建师范大学环境与资源学院, 福建 福州 350117 |
|
Advances in migration and transformation of thiolated arsenic and its health risks in soil-water environment and plant system |
Zhenyu QIANG1(),Yifan JIANG1,Gang LI2,Yonghe HAN3,Dongxing GUAN1() |
1.College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China 2.Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China 3.College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China |
引用本文:
强震宇,江逸帆,李刚,韩永和,管冬兴. 巯基砷在土水环境-植物体系中迁移转化与健康风险的研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 689-702.
Zhenyu QIANG,Yifan JIANG,Gang LI,Yonghe HAN,Dongxing GUAN. Advances in migration and transformation of thiolated arsenic and its health risks in soil-water environment and plant system. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 689-702.
链接本文:
https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.08.151
或
https://www.zjujournals.com/agr/CN/Y2024/V50/I5/689
|
81 |
OCHI T, KITA K, SUZUKI T, et al. Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione[J]. Toxicology and Applied Pharmacology, 2008, 228(1): 59-67. DOI: 10.1016/j.taap.2007.11.023
doi: 10.1016/j.taap.2007.11.023
|
82 |
YOON S G, KIM Y E, CHAE C, et al. Dimethylmonothi-oarsinic acid and dimethyldithioarsinic acid in the environment: sorption characteristics on 2-line ferrihydrite and acute toxicity to Daphnia magna [J]. Environmental Geochemistry and Health, 2022, 44(3): 925-932. DOI: 10.1007/s10653-021-01005-x
doi: 10.1007/s10653-021-01005-x
|
83 |
GUAN D X, HE S X, LI G, et al. Application of diffusive gradients in thin-films technique for speciation, bioavailability, modeling and mapping of nutrients and contaminants in soils[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(17): 3035-3079. DOI: 10.1080/10643389.2021.1900765
doi: 10.1080/10643389.2021.1900765
|
84 |
NUNES L M, LI G, CHEN W Q, et al. Embedded health risk from arsenic in globally traded rice[J]. Environmental Science & Technology, 2022, 56(10): 6415-6425. DOI: 10.1021/acs.est.1c08238
doi: 10.1021/acs.est.1c08238
|
1 |
JAIN C K, ALI I. Arsenic: occurrence, toxicity and speciation techniques[J]. Water Research, 2000, 34(17): 4304-4312. DOI: 10.1016/S0043-1354(00)00182-2
doi: 10.1016/S0043-1354(00)00182-2
|
2 |
GARCIA-MANYES S, JIMÉNEZ G, PADRÓ A, et al. Arsenic speciation in contaminated soils[J]. Talanta, 2002, 58(1): 97-109. DOI: 10.1016/S0039-9140(02)00259-X
doi: 10.1016/S0039-9140(02)00259-X
|
3 |
ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467. DOI: 10.1146/annurev-earth-060313-054942
doi: 10.1146/annurev-earth-060313-054942
|
4 |
NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem[J]. Environmental Health Perspectives, 2013, 121(3): 295-302. DOI: 10.1289/ehp.1205875
doi: 10.1289/ehp.1205875
|
5 |
KARAGAS M R, GOSSAI A, PIERCE B, et al. Drinking water arsenic contamination, skin lesions, and malignancies: a systematic review of the global evidence[J]. Current Envi-ronmental Health Reports, 2015, 2(1): 52-68. DOI: 10.1007/s40572-014-0040-x
doi: 10.1007/s40572-014-0040-x
|
6 |
IRSHAD S, XIE Z M, WANG J, et al. Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata [J]. Journal of Hazardous Materials, 2020, 381: 120903. DOI: 10.1016/j.jhazmat.2019.120903
doi: 10.1016/j.jhazmat.2019.120903
|
7 |
HERATH I, VITHANAGE M, SENEWEERA S, et al. Thio-lated arsenic in natural systems: what is current, what is new and what needs to be known[J]. Environment International, 2018, 115: 370-386. DOI: 10.1016/j.envint.2018.03.027
doi: 10.1016/j.envint.2018.03.027
|
8 |
SUESS E, MEHLHORN J, PLANER-FRIEDRICH B. Anoxic, ethanolic, and cool-an improved method for thioarsenate preservation in iron-rich waters[J]. Applied Geochemistry, 2015, 62: 224-233. DOI: 10.1016/j.apgeochem.2014.11.017
doi: 10.1016/j.apgeochem.2014.11.017
|
85 |
WALTON C R, EWENS S, COATES J D, et al. Phosphorus availability on the early Earth and the impacts of life[J]. Nature Geoscience, 2023, 16(5): 399-409. DOI:10.1038/s41561-023-01209-z
doi: 10.1038/s41561-023-01209-z
|
9 |
KUMAR N, NOËL V, PLANER-FRIEDRICH B, et al. Redox heterogeneities promote thioarsenate formation and release into groundwater from low arsenic sediments[J]. Environmental Science & Technology, 2020, 54(6): 3237-3244. DOI: 10.1021/acs.est.9b06502
doi: 10.1021/acs.est.9b06502
|
10 |
DAI J, CHEN C, GAO A X, et al. Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumu-lation in rice grains[J]. Environmental Science & Technology, 2021, 55(13): 8665-8674. DOI: 10.1021/acs.est.1c00133
doi: 10.1021/acs.est.1c00133
|
11 |
SMIEJA J A, WILKIN R T. Preservation of sulfidic waters containing dissolved As(Ⅲ)[J]. Journal of Environmental Monitoring, 2003, 5(6): 913-916. DOI: 10.1039/b306567g
doi: 10.1039/b306567g
|
12 |
PLANER-FRIEDRICH B, WALLSCHLÄGER D. A critical investigation of hydride generation-based arsenic speciation in sulfidic waters[J]. Environmental Science & Technology, 2009, 43(13): 5007-5013. DOI: 10.1021/es900111z
doi: 10.1021/es900111z
|
13 |
WIND T, CONRAD R. Localization of sulfate reduction in planted and unplanted rice field soil[J]. Biogeochemistry, 1997, 37(3): 253-278.
|
14 |
PLANER-FRIEDRICH B, LONDON J, MCCLESKEY R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251. DOI: 10.1021/es070273v
doi: 10.1021/es070273v
|
15 |
WANG J J, KERL C F, HU P J, et al. Thiolated arsenic species observed in rice paddy pore waters[J]. Nature Geoscience, 2020, 13(4): 282-287. DOI: 10.1038/s41561-020-0533-1
doi: 10.1038/s41561-020-0533-1
|
16 |
KERL C F, RAFFERTY C, CLEMENS S, et al. Monothi-oarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018, 52(16): 9154-9161. DOI: 10.1021/acs.est.8b02202
doi: 10.1021/acs.est.8b02202
|
17 |
RAML R, GOESSLER W, FRANCESCONI K A. Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2006, 1128(1/2): 164-170. DOI: 10.1016/j.chroma.2006.06.061
doi: 10.1016/j.chroma.2006.06.061
|
18 |
YOON S G, KWAK I S, YOON H O, et al. Adsorption charac-teristics of dimethylated arsenicals on iron oxide-modified rice husk biochar[J]. Toxics, 2022, 10(11): 703. DOI: 10.3390/toxics10110703
doi: 10.3390/toxics10110703
|
19 |
MOE B, PENG H Y, LU X F, et al. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing[J]. Journal of Environmental Sciences, 2016, 49: 113-124. DOI: 10.1016/j.jes.2016.10.004
doi: 10.1016/j.jes.2016.10.004
|
20 |
SHAN H M, ZHANG J X, PENG S X, et al. Sorption of monothioarsenate to the natural sediments and its competition with arsenite and arsenate[J]. International Journal of Envi-ronmental Research and Public Health, 2021, 18(23): 12839. DOI: 10.3390/ijerph182312839
doi: 10.3390/ijerph182312839
|
21 |
BURTON E D, JOHNSTON S G, PLANER-FRIEDRICH B. Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid[J]. Chemical Geology, 2013, 343: 12-24. DOI: 10.1016/j.chemgeo.2013.02.005
doi: 10.1016/j.chemgeo.2013.02.005
|
22 |
STAUDER S, RAUE B, SACHER F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5939. DOI: 10.1021/es048034k
doi: 10.1021/es048034k
|
23 |
DURÁN-TORO V M, PRICE R E, MAAS M, et al. Amor-phous arsenic sulfide nanoparticles in a shallow water hydro-thermal system[J]. Marine Chemistry, 2019, 211: 25-36. DOI: 10.1016/j.marchem.2019.03.008
doi: 10.1016/j.marchem.2019.03.008
|
24 |
POULTON S W, KROM M D, RAISWELL R. A revised scheme for the reactivity of iron (oxyhydr) oxide minerals towards dissolved sulfide[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3703-3715. DOI: 10.1016/j.gca.2004.03.012
doi: 10.1016/j.gca.2004.03.012
|
25 |
WILKIN R T, WALLSCHLÄGER D, FORD R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4(1): 1-7. DOI: 10.1039/b211188h
doi: 10.1039/b211188h
|
26 |
WU G, HUANG L Q, JIANG H C, et al. Thioarsenate for-mation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium isolated from a hot spring[J]. Frontiers in Microbiology, 2017, 8: 1336. DOI: 10.3389/fmicb.2017.01336
doi: 10.3389/fmicb.2017.01336
|
27 |
SUESS E, PLANER-FRIEDRICH B. Thioarsenate formation upon dissolution of orpiment and arsenopyrite[J]. Chemo-sphere, 2012, 89(11): 1390-1398. DOI: 10.1016/j.chemosphere.2012.05.109
doi: 10.1016/j.chemosphere.2012.05.109
|
28 |
ALI J D, GUATAME-GARCIA A, LEYBOURNE M I, et al. Dissolved thiolated arsenic formed by weathering of mine wastes[J]. Chemosphere, 2023, 321: 138124. DOI: 10.1016/j.chemosphere.2023.138124
doi: 10.1016/j.chemosphere.2023.138124
|
29 |
FAN C J, LIU G L, LONG Y M, et al. Thiolation in arsenic metabolism: a chemical perspective[J]. Metallomics, 2018, 10(10): 1368-1382. DOI: 10.1039/c8mt00231b
doi: 10.1039/c8mt00231b
|
30 |
DAI J, TANG Z, GAO A X, et al. Widespread occurrence of the highly toxic dimethylated monothioarsenate (DMMTA) in rice globally[J]. Environmental Science & Technology, 2022, 56(6): 3575-3586. DOI: 10.1021/acs.est.1c08394
doi: 10.1021/acs.est.1c08394
|
31 |
ZAKAZNOVA-HERZOG V P, SEWARD T M. A spectro-photometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22 ℃[J]. Geochimica et Cosmochimica Acta, 2012, 83: 48-60. DOI: 10.1016/j.gca.2011.12.022
doi: 10.1016/j.gca.2011.12.022
|
32 |
SUESS E, SCHEINOST A C, BOSTICK B C, et al. Discrimi-nation of thioarsenites and thioarsenates by X-ray absorption spectroscopy[J]. Analytical Chemistry, 2009, 81(20): 8318-8326. DOI: 10.1021/ac901094b
doi: 10.1021/ac901094b
|
33 |
COUTURE R M, ROSE J, KUMAR N, et al. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation[J]. Environ-mental Science & Technology, 2013, 47(11): 5652-5659. DOI: 10.1021/es3049724
doi: 10.1021/es3049724
|
34 |
HASHIMOTO Y, KANKE Y. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations[J]. Environmental Pollution, 2018, 238: 617-623. DOI: 10.1016/j.envpol.2018.03.039
doi: 10.1016/j.envpol.2018.03.039
|
35 |
COLINA BLANCO A E, KERL C F, PLANER-FRIEDRICH B. Detection of thioarsenates in rice grains and rice products[J]. Journal of Agricultural and Food Chemistry, 2021, 69(7): 2287-2294. DOI: 10.1021/acs.jafc.0c06853
doi: 10.1021/acs.jafc.0c06853
|
36 |
CONKLIN S D, FRICKE M W, CREED P A, et al. Investi-gation of the pH effects on the formation of methylated thio-arsenicals, and the effects of pH and temperature on their stability[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(5): 711-716. DOI: 10.1039/b713145c
doi: 10.1039/b713145c
|
37 |
SUN S T, XIE X J, LI J X, et al. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2020, 590: 125268. DOI: 10.1016/j.jhydrol.2020.125268
doi: 10.1016/j.jhydrol.2020.125268
|
38 |
BAKER M D, INNISS W E, MAYFIELD C I, et al. Effect of pH on the methylation of mercury and arsenic by sediment microorganisms[J]. Environmental Technology Letters, 1983, 4(2): 89-100.
|
39 |
HÄRTIG C, PLANER-FRIEDRICH B. Thioarsenate trans-formation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring[J]. Environmental Science & Technology, 2012, 46(8): 4348-4356. DOI: 10.1021/es204277j
doi: 10.1021/es204277j
|
40 |
CHEN C, YANG B Y, SHEN Y, et al. Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils[J]. Soil Biology & Biochemistry, 2021, 154: 108129. DOI: 10.1016/j.soilbio.2021.108129
doi: 10.1016/j.soilbio.2021.108129
|
41 |
WANG J J, HALDER D, WEGNER L, et al. Redox depend-ence of thioarsenate occurrence in paddy soils and the rice rhizosphere[J]. Environmental Science & Technology, 2020, 54(7): 3940-3950. DOI: 10.1021/acs.est.9b05639
doi: 10.1021/acs.est.9b05639
|
42 |
ZHAO F J, ZHU Y G, MEHARG A A. Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms[J]. Environmental Science & Technology, 2013, 47(9): 3957-3966. DOI: 10.1021/es304295n
doi: 10.1021/es304295n
|
43 |
XU X W, WANG P, ZHANG J, et al. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction[J]. Envi-ronmental Pollution, 2019, 251: 952-960. DOI: 10.1016/j.envpol.2019.05.086
doi: 10.1016/j.envpol.2019.05.086
|
44 |
BESOLD J, BISWAS A, SUESS E, et al. Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat[J]. Environmental Science & Tech-nology, 2018, 52(13): 7317-7326. DOI: 10.1021/acs.est.8b01542
doi: 10.1021/acs.est.8b01542
|
45 |
COUTURE R M, VAN CAPPELLEN P. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments[J]. Journal of Hazardous Materials, 2011, 189(3): 647-652. DOI: 10.1016/j.jhazmat.2011.02.029
doi: 10.1016/j.jhazmat.2011.02.029
|
46 |
NGHIEM A A, PROMMER H, MOZUMDER M R H, et al. Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides[J]. Nature Water, 2023, 1(2): 151-165. DOI: 10.1038/s44221-022-00022-z
doi: 10.1038/s44221-022-00022-z
|
47 |
YAN K T, PLANER-FRIEDRICH B, KNOBLOCH P V T, et al. Effects of thiolation and methylation on arsenic sorption to geothermal sediments[J]. Science of the Total Environment, 2022, 827: 154016. DOI: 10.1016/j.scitotenv.2022.154016
doi: 10.1016/j.scitotenv.2022.154016
|
48 |
KUMAR N, NOËL V, BESOLD J, et al. Mechanism of arsenic partitioning during sulfidation of As-sorbed ferrihydrite nanoparticles[J]. ACS Earth and Space Chemistry, 2022, 6(7): 1666-1673. DOI: 10.1021/acsearthspacechem.1c00373
doi: 10.1021/acsearthspacechem.1c00373
|
49 |
PLANER-FRIEDRICH B, SCHALLER J, WISMETH F, et al. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies[J]. Environmental Science & Technology, 2018, 52(10): 5931-5939. DOI: 10.1021/acs.est.8b00948
doi: 10.1021/acs.est.8b00948
|
50 |
廖丹雪,单慧媚,张进贤,等.一硫代砷在针铁矿上的吸附及影响因素[J].环境科学,2020,41(7):3337-3344. DOI:10.13227/j.hjkx.202001132 LIAO D X, SHAN H M, ZHANG J X, et al. Characteristics and influencing factors of monothioarsenate adsorption on goethite[J]. Environmental Science, 2020, 41(7): 3337-3344. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202001132
|
51 |
廖丹雪,单慧媚,彭三曦,等.一硫代砷酸盐在介质上的吸附特征及机制[J].环境科学,2020,41(1):284-292. DOI:10.13227/j.hjkx.201905239 LIAO D X, SHAN H M, PENG S X, et al. Characteristics and mechanism of monothioarsenate adsorption on sand, sediment, and goethite[J]. Environmental Science, 2020, 41(1): 284-292. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201905239
|
52 |
张进贤,单慧媚,廖丹雪,等.磷酸盐对土壤吸附一硫代砷的影响[J].中国环境科学,2022,42(8):3849-3857. DOI:10.19674/j.cnki.issn1000-6923.2022.0153 ZHANG J X, SHAN H M, LIAO D X, et al. Effect of phosphate on monothiosarsenate adsorption to soil[J]. China Environmental Science, 2022, 42(8): 3849-3857. (in Chinese with English abstract)
doi: 10.19674/j.cnki.issn1000-6923.2022.0153
|
53 |
CHEN C, YU Y, WANG Y J, et al. Reduction of dimethylar-senate to highly toxic dimethylarsenite in paddy soil and rice plants[J]. Environmental Science & Technology, 2023, 57(1): 822-830. DOI: 10.1021/acs.est.2c07418
doi: 10.1021/acs.est.2c07418
|
54 |
MÜLLER V, CHAVEZ-CAPILLA T, FELDMANN J, et al. Increasing temperature and flooding enhance arsenic release and biotransformations in Swiss soils[J]. Science of the Total Environment, 2022, 838: 156049. DOI: 10.1016/j.scitotenv.2022.156049
doi: 10.1016/j.scitotenv.2022.156049
|
55 |
LOMAX C, LIU W J, WU L Y, et al. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672. DOI: 10.1111/j.1469-8137.2011.03956.x
doi: 10.1111/j.1469-8137.2011.03956.x
|
56 |
WANG L X, GUO Q H, WU G, et al. Methanogens-driven arsenic methylation preceding formation of methylated thioarse-nates in sulfide-rich hot springs[J]. Environmental Science & Technology, 2023, 57(19): 7410-7420. DOI: 10.1021/acs.est.2c08814
doi: 10.1021/acs.est.2c08814
|
57 |
CHEN C, YANG B Y, GAO A X, et al. Suppression of methanogenesis in paddy soil increases dimethylarsenate accumulation and the incidence of straighthead disease in rice[J]. Soil Biology & Biochemistry, 2022, 169: 108689. DOI: 10.1016/j.soilbio.2022.108689
doi: 10.1016/j.soilbio.2022.108689
|
58 |
CHEN J, YOSHINAGA M, ROSEN B P. The antibiotic action of methylarsenite is an emergent property of microbial communities[J]. Molecular Microbiology, 2019, 111(2): 487-494. DOI: 10.1111/mmi.14169
doi: 10.1111/mmi.14169
|
59 |
STONE R. Arsenic and paddy rice: a neglected cancer risk?[J]. Science, 2008, 321(5886): 184-185. DOI: 10.1126/science.321.5886.184
doi: 10.1126/science.321.5886.184
|
60 |
CHEN C, YANG B Y, GAO A X, et al. Transformation of arsenic species by diverse endophytic bacteria of rice roots[J]. Environmental Pollution, 2022, 309: 119825. DOI: 10.1016/j.envpol.2022.119825
doi: 10.1016/j.envpol.2022.119825
|
61 |
TANG X J, LI L Y, WU C, et al. The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers[J]. Environmental Pollution, 2020, 264: 114679. DOI: 10.1016/j.envpol.2020.114679
doi: 10.1016/j.envpol.2020.114679
|
62 |
LEE C H, HSIEH Y C, LIN T H, et al. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice[J]. Plant and Soil, 2013, 363(1/2): 231-241. DOI: 10.1007/s11104-012-1308-2
doi: 10.1007/s11104-012-1308-2
|
63 |
KERL C F, BALLARAN T B, PLANER-FRIEDRICH B. Iron plaque at rice roots: no barrier for methylated thioarsenates[J]. Environmental Science & Technology, 2019, 53(23): 13666-13674. DOI: 10.1021/acs.est.9b04158
doi: 10.1021/acs.est.9b04158
|
64 |
PLANER-FRIEDRICH B, KERL C F, COLINA BLANCO A E, et al. Dimethylated thioarsenates: a potentially dangerous blind spot in current worldwide regulatory limits for arsenic in rice[J]. Journal of Agricultural and Food Chemistry, 2022, 70(31): 9610-9618. DOI: 10.1021/acs.jafc.2c02425
doi: 10.1021/acs.jafc.2c02425
|
65 |
PISCHKE E, BAROZZI F, COLINA BLANCO A E, et al. Dimethylmonothioarsenate is highly toxic for plants and readily translocated to shoots[J]. Environmental Science & Technology, 2022, 56(14): 10072-10083. DOI: 10.1021/acs.est.2c01206
doi: 10.1021/acs.est.2c01206
|
66 |
KERL C F, SCHINDELE R A, BRÜGGENWIRTH L, et al. Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total arsenic translocation in rice plants[J]. Environmental Science & Technology, 2019, 53(10): 5787-5796. DOI: 10.1021/acs.est.9b00592
doi: 10.1021/acs.est.9b00592
|
67 |
PLANER-FRIEDRICH B, KÜHNLENZ T, HALDER D, et al. Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana [J]. Environmental Science & Technology, 2017, 51(12): 7187-7196. DOI: 10.1021/acs.est.6b06028
doi: 10.1021/acs.est.6b06028
|
68 |
陈焱山,贾梦茹,曹越,等.蜈蚣草砷富集的分子机制研究进展[J].农业环境科学学报,2018,37(7):1402-1408. DOI:10.11654/jaes.2018-0563 CHEN Y S, JIA M R, CAO Y, et al. Advances in molecular mechanisms of arsenic hyperaccumulation in Pteris vittata [J]. Journal of Agro-Environment Science, 2018, 37(7): 1402-1408. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-0563
|
69 |
张田,闫慧莉,何振艳.蜈蚣草中砷超富集的分子机制研究进展[J].生物工程学报,2020,36(3):397-406. DOI:10.13345/j.cjb.190374 ZHANG T, YAN H L, HE Z Y. Advances in molecular mechanisms of arsenic hyperaccumulation of Pteris vittata L.[J]. Chinese Journal of Biotechnology, 2020, 36(3): 397-406. (in Chinese with English abstract)
doi: 10.13345/j.cjb.190374
|
70 |
MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. PNAS, 2008, 105(29): 9931-9935. DOI: 10.1073/pnas.0802361105
doi: 10.1073/pnas.0802361105
|
71 |
ACKERMAN A H, CREED P A, PARKS A N, et al. Com-parison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice[J]. Environmental Science & Technology, 2005, 39(14): 5241-5246. DOI: 10.1021/es048150n
doi: 10.1021/es048150n
|
72 |
MEBANE C A, CHOWDHURY M J, DE SCHAMPHELAERE K A C, et al. Metal bioavailability models: current status, lessons learned, considerations for regulatory use, and the path forward[J]. Environmental Toxicology and Chemistry, 2020, 39(1): 60-84. DOI: 10.1002/etc.4560
doi: 10.1002/etc.4560
|
73 |
ANDREWS C W, BENNETT L, YU L X. Predicting human oral bioavailability of a compound: development of a novel quantitative structure-bioavailability relationship[J]. Pharma-ceutical Research, 2000, 17(6): 639-644. DOI: 10.1023/a:1007556711109
doi: 10.1023/a:1007556711109
|
74 |
RAAB A, KUBACHKA K, STROHMAIER M, et al. New arsenic compound identified in rice grain: dimethylarsonyl-dimethylarsinic acid[J]. Environmental Chemistry, 2023, 20(1/2): 74-82. DOI: 10.1071/EN22063
doi: 10.1071/EN22063
|
75 |
HANSEN H R, RAAB A, JASPARS M, et al. Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMA(Ⅲ)] and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity[J]. Chemical Research in Toxicology, 2004, 17(8): 1086-1091. DOI: 10.1021/tx049978q
doi: 10.1021/tx049978q
|
76 |
RUBIN S S D C, ALAVA P, ZEKKER I, et al. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract[J]. Environmental Health Perspectives, 2014, 122(8): 817-822. DOI: 10.1289/ehp.1307759
doi: 10.1289/ehp.1307759
|
77 |
RAML R, RUMPLER A, GOESSLER W, et al. Thio-dime-thylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh[J]. Toxicology and Applied Pharmacology, 2007, 222(3): 374-380. DOI: 10.1016/j.taap.2006.12.014
doi: 10.1016/j.taap.2006.12.014
|
78 |
MANDAL B K, SUZUKI K T, ANZAI K, et al. A SEC-HPLC-ICP MS hyphenated technique for identification of sulfur-containing arsenic metabolites in biological samples[J]. Journal of Chromatography B, 2008, 874(1/2): 64-76. DOI: 10.1016/j.jchromb.2008.09.004
doi: 10.1016/j.jchromb.2008.09.004
|
79 |
NARANMANDURA H, OGRA Y, IWATA K, et al. Evidence for toxicity differences between inorganic arsenite and thi-oarsenicals in human bladder cancer cells[J]. Toxicology and Applied Pharmacology, 2009, 238(2): 133-140. DOI: 10.1016/j.taap.2009.05.006
doi: 10.1016/j.taap.2009.05.006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|