Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 689-702    DOI: 10.3785/j.issn.1008-9209.2023.08.151
综述     
巯基砷在土水环境-植物体系中迁移转化与健康风险的研究进展
强震宇1(),江逸帆1,李刚2,韩永和3,管冬兴1()
1.浙江大学环境与资源学院, 浙江 杭州 310058
2.中国科学院城市环境研究所, 福建 厦门 361021
3.福建师范大学环境与资源学院, 福建 福州 350117
Advances in migration and transformation of thiolated arsenic and its health risks in soil-water environment and plant system
Zhenyu QIANG1(),Yifan JIANG1,Gang LI2,Yonghe HAN3,Dongxing GUAN1()
1.College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
3.College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
 全文: PDF(1818 KB)   HTML
摘要:

巯基砷是砷物质结构中双键氧(O)、羟基(—OH)或甲基(—CH3)被双键硫(S)或巯基(—SH)取代的新型砷化合物,普遍存在于淹水的含硫土壤中,威胁着土壤健康和食品安全。伴随分析方法的进步,对巯基砷在土水环境-植物体系中分布规律和环境行为的研究不断取得新进展。本文对巯基砷的化学形态和分析方法、巯基砷在土水环境中的生物地球化学行为、巯基砷在土水环境-植物体系中的迁移转化与赋存规律、巯基砷在稻米中的赋存和健康风险等4个方面进行了阐述,重点梳理了巯基砷在环境行为中所发生的形态和含量变化情况,并对巯基砷研究的发展趋势进行了展望。

关键词: 巯基砷土水环境水稻生物地球化学行为健康风险    
Abstract:

Thiolated arsenic is a new type of arsenic compounds in which O, —OH or —CH3 are replaced by S or —SH in the structure of arsenic material. It has been found to be ubiquitous in flooded sulfur-containing soils, threatening soil health and food safety. With the advancement of analytical methods, new progress has been made in the study of the distribution and environmental behaviors of thiolated arsenic in soil-water environment and plant system. This paper reviewed the related research progress in recent years from the following four aspects: 1) chemical species and analytical methods of thiolated arsenic; 2) biogeochemical behaviors of thiolated arsenic in soil-water environment; 3) migration, transformation, and accumulation of thiolated arsenic in soil-water environment and plant system; 4) accumulation and health risks of thiolated arsenic in rice grains. This review emphasized the changes in the species and content of thiolated arsenic during environmental processes. Furthermore, the development trend of thiolated arsenic was prospected.

Key words: thiolated arsenic    soil-water environment    rice    biogeochemical behaviors    health risks
收稿日期: 2023-08-15 出版日期: 2024-10-31
CLC:  X53  
基金资助: 国家自然科学基金项目(42177194);中央高校基本科研业务费专项资金项目(2021QNA6004)
通讯作者: 管冬兴     E-mail: zyqiang@zju.edu.cn;dxguan@zju.edu.cn
作者简介: 强震宇(https://orcid.org/0009-0000-5004-1175),E-mail:zyqiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
强震宇
江逸帆
李刚
韩永和
管冬兴

引用本文:

强震宇,江逸帆,李刚,韩永和,管冬兴. 巯基砷在土水环境-植物体系中迁移转化与健康风险的研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 689-702.

Zhenyu QIANG,Yifan JIANG,Gang LI,Yonghe HAN,Dongxing GUAN. Advances in migration and transformation of thiolated arsenic and its health risks in soil-water environment and plant system. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 689-702.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.08.151        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/689

图1  土水环境中砷的主要化学形态
国家 CountryDMMTADMDTAMMMTAMTADTA
法国 France0.102±0.1100.006±0.0240.069±0.0910.129±0.1570.135±0.180
意大利 Italy0.133±0.1510.017±0.0410.033±0.0820.050±0.0830.017±0.041
表1  稻田土水环境中巯基砷的形态与质量浓度[15] ( μg/L)

反应序数

Reaction number

反应方程式

Reaction equation

文献

Reference

反应1 Reaction 15H3AsO3+3H2S2As+3H2AsO3S+6H2O+3H+[21]
反应2 Reaction 2H2AsO3S+H2SH2AsO2S2+H2O[22]
反应3 Reaction 3H3AsO3+3H2SH3AsS3+3H2O[23-24]
反应4 Reaction 4H3AsS3+O2H3AsO2S2+S[23-24]
反应5 Reaction 52H3AsS3+2O22H3AsOS3+O2[23-24]
反应6 Reaction 6H3AsO3+SH2AsO3S+H+[23-24]
反应7 Reaction 7As2S3+4H2O?2As(OH)2S+HS+3H+[25-26]
反应8 Reaction 8As2S3+HS+2H2O?2As(OH)S22+3H+[25-26]
反应9 Reaction 9As2S3+3HS?2AsS3H2+H+[25-26]
反应10 Reaction 10As2S3+5HS+3H+?2As(SH)4[25-26]
反应11 Reaction 11As2S3+6H2O?2H3AsO3+3H2S[27]
反应12 Reaction 123As2S3+3H2S?2H2As3S6+2H+[27]
反应13 Reaction 13HAsO42+xHSHAsSxO4x2+xOH[26]
表2  巯基砷生成相关的反应方程式

分离方法

Separation

method

砷化学形态

Chemical species of arsenic

分离柱

Separation

column

洗脱液

Eluent

测试通量

Measurement

throughput/

(mL/min)

仪器

Equipment

文献

Reference

AECAs(Ⅲ)、As(Ⅴ)、MTA、DTA、TTA、TTTA、DMA、DMMTA、MMA、MMMTAAG/AS16NaOH1.2

ICP-MS、

ES-MS

[14]
ICAs(Ⅲ)、As(Ⅴ)、MMA、DMA、MMDTA、DMDTA、DTA、TTAAG/AS16NaOH1.2ICP-MS[15]
ICAs(Ⅲ)、As(Ⅴ)、MTAPRP-X100NH4NO3、NH4H2PO4、Na2-EDTA1.0ICP-MS[16]
ICAs(Ⅲ)、As(Ⅴ)、MMA、DMA、DMMTA、MTAPRP-X100NH4H2PO4、NH4NO31.0ICP-MS[35]
ICICP-MS
As(Ⅲ)、As(Ⅴ)、MMA、DMA、DMMTA、DMDTA、MTA、DTAAG/AS16NaOH、甲醇1.2[35]
HPLCAs(Ⅲ)、As(Ⅴ)、MMA、DMA、DMMTAPRP-X100NH4H2PO4、NH4NO31.2ICP-MS[30]
[30]
HPLCC18NH4H2PO41.0ICP-MS
表3  巯基砷化学形态的主要检测方法
图2  巯基砷在土水环境-水稻系统中的迁移转化Thio-As:巯基砷;MeAs:甲基砷;S0:零价硫。
图3  巯基砷在土水环境-植物体系中的迁移转化与健康风险概述
81 OCHI T, KITA K, SUZUKI T, et al. Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione[J]. Toxicology and Applied Pharmacology, 2008, 228(1): 59-67. DOI: 10.1016/j.taap.2007.11.023
doi: 10.1016/j.taap.2007.11.023
82 YOON S G, KIM Y E, CHAE C, et al. Dimethylmonothi-oarsinic acid and dimethyldithioarsinic acid in the environment: sorption characteristics on 2-line ferrihydrite and acute toxicity to Daphnia magna [J]. Environmental Geochemistry and Health, 2022, 44(3): 925-932. DOI: 10.1007/s10653-021-01005-x
doi: 10.1007/s10653-021-01005-x
83 GUAN D X, HE S X, LI G, et al. Application of diffusive gradients in thin-films technique for speciation, bioavailability, modeling and mapping of nutrients and contaminants in soils[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(17): 3035-3079. DOI: 10.1080/10643389.2021.1900765
doi: 10.1080/10643389.2021.1900765
84 NUNES L M, LI G, CHEN W Q, et al. Embedded health risk from arsenic in globally traded rice[J]. Environmental Science & Technology, 2022, 56(10): 6415-6425. DOI: 10.1021/acs.est.1c08238
doi: 10.1021/acs.est.1c08238
1 JAIN C K, ALI I. Arsenic: occurrence, toxicity and speciation techniques[J]. Water Research, 2000, 34(17): 4304-4312. DOI: 10.1016/S0043-1354(00)00182-2
doi: 10.1016/S0043-1354(00)00182-2
2 GARCIA-MANYES S, JIMÉNEZ G, PADRÓ A, et al. Arsenic speciation in contaminated soils[J]. Talanta, 2002, 58(1): 97-109. DOI: 10.1016/S0039-9140(02)00259-X
doi: 10.1016/S0039-9140(02)00259-X
3 ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467. DOI: 10.1146/annurev-earth-060313-054942
doi: 10.1146/annurev-earth-060313-054942
4 NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem[J]. Environmental Health Perspectives, 2013, 121(3): 295-302. DOI: 10.1289/ehp.1205875
doi: 10.1289/ehp.1205875
5 KARAGAS M R, GOSSAI A, PIERCE B, et al. Drinking water arsenic contamination, skin lesions, and malignancies: a systematic review of the global evidence[J]. Current Envi-ronmental Health Reports, 2015, 2(1): 52-68. DOI: 10.1007/s40572-014-0040-x
doi: 10.1007/s40572-014-0040-x
6 IRSHAD S, XIE Z M, WANG J, et al. Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata [J]. Journal of Hazardous Materials, 2020, 381: 120903. DOI: 10.1016/j.jhazmat.2019.120903
doi: 10.1016/j.jhazmat.2019.120903
7 HERATH I, VITHANAGE M, SENEWEERA S, et al. Thio-lated arsenic in natural systems: what is current, what is new and what needs to be known[J]. Environment International, 2018, 115: 370-386. DOI: 10.1016/j.envint.2018.03.027
doi: 10.1016/j.envint.2018.03.027
8 SUESS E, MEHLHORN J, PLANER-FRIEDRICH B. Anoxic, ethanolic, and cool-an improved method for thioarsenate preservation in iron-rich waters[J]. Applied Geochemistry, 2015, 62: 224-233. DOI: 10.1016/j.apgeochem.2014.11.017
doi: 10.1016/j.apgeochem.2014.11.017
85 WALTON C R, EWENS S, COATES J D, et al. Phosphorus availability on the early Earth and the impacts of life[J]. Nature Geoscience, 2023, 16(5): 399-409. DOI:10.1038/s41561-023-01209-z
doi: 10.1038/s41561-023-01209-z
9 KUMAR N, NOËL V, PLANER-FRIEDRICH B, et al. Redox heterogeneities promote thioarsenate formation and release into groundwater from low arsenic sediments[J]. Environmental Science & Technology, 2020, 54(6): 3237-3244. DOI: 10.1021/acs.est.9b06502
doi: 10.1021/acs.est.9b06502
10 DAI J, CHEN C, GAO A X, et al. Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumu-lation in rice grains[J]. Environmental Science & Technology, 2021, 55(13): 8665-8674. DOI: 10.1021/acs.est.1c00133
doi: 10.1021/acs.est.1c00133
11 SMIEJA J A, WILKIN R T. Preservation of sulfidic waters containing dissolved As(Ⅲ)[J]. Journal of Environmental Monitoring, 2003, 5(6): 913-916. DOI: 10.1039/b306567g
doi: 10.1039/b306567g
12 PLANER-FRIEDRICH B, WALLSCHLÄGER D. A critical investigation of hydride generation-based arsenic speciation in sulfidic waters[J]. Environmental Science & Technology, 2009, 43(13): 5007-5013. DOI: 10.1021/es900111z
doi: 10.1021/es900111z
13 WIND T, CONRAD R. Localization of sulfate reduction in planted and unplanted rice field soil[J]. Biogeochemistry, 1997, 37(3): 253-278.
14 PLANER-FRIEDRICH B, LONDON J, MCCLESKEY R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251. DOI: 10.1021/es070273v
doi: 10.1021/es070273v
15 WANG J J, KERL C F, HU P J, et al. Thiolated arsenic species observed in rice paddy pore waters[J]. Nature Geoscience, 2020, 13(4): 282-287. DOI: 10.1038/s41561-020-0533-1
doi: 10.1038/s41561-020-0533-1
16 KERL C F, RAFFERTY C, CLEMENS S, et al. Monothi-oarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018, 52(16): 9154-9161. DOI: 10.1021/acs.est.8b02202
doi: 10.1021/acs.est.8b02202
17 RAML R, GOESSLER W, FRANCESCONI K A. Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2006, 1128(1/2): 164-170. DOI: 10.1016/j.chroma.2006.06.061
doi: 10.1016/j.chroma.2006.06.061
18 YOON S G, KWAK I S, YOON H O, et al. Adsorption charac-teristics of dimethylated arsenicals on iron oxide-modified rice husk biochar[J]. Toxics, 2022, 10(11): 703. DOI: 10.3390/toxics10110703
doi: 10.3390/toxics10110703
19 MOE B, PENG H Y, LU X F, et al. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing[J]. Journal of Environmental Sciences, 2016, 49: 113-124. DOI: 10.1016/j.jes.2016.10.004
doi: 10.1016/j.jes.2016.10.004
20 SHAN H M, ZHANG J X, PENG S X, et al. Sorption of monothioarsenate to the natural sediments and its competition with arsenite and arsenate[J]. International Journal of Envi-ronmental Research and Public Health, 2021, 18(23): 12839. DOI: 10.3390/ijerph182312839
doi: 10.3390/ijerph182312839
21 BURTON E D, JOHNSTON S G, PLANER-FRIEDRICH B. Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid[J]. Chemical Geology, 2013, 343: 12-24. DOI: 10.1016/j.chemgeo.2013.02.005
doi: 10.1016/j.chemgeo.2013.02.005
22 STAUDER S, RAUE B, SACHER F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5939. DOI: 10.1021/es048034k
doi: 10.1021/es048034k
23 DURÁN-TORO V M, PRICE R E, MAAS M, et al. Amor-phous arsenic sulfide nanoparticles in a shallow water hydro-thermal system[J]. Marine Chemistry, 2019, 211: 25-36. DOI: 10.1016/j.marchem.2019.03.008
doi: 10.1016/j.marchem.2019.03.008
24 POULTON S W, KROM M D, RAISWELL R. A revised scheme for the reactivity of iron (oxyhydr) oxide minerals towards dissolved sulfide[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3703-3715. DOI: 10.1016/j.gca.2004.03.012
doi: 10.1016/j.gca.2004.03.012
25 WILKIN R T, WALLSCHLÄGER D, FORD R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4(1): 1-7. DOI: 10.1039/b211188h
doi: 10.1039/b211188h
26 WU G, HUANG L Q, JIANG H C, et al. Thioarsenate for-mation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium isolated from a hot spring[J]. Frontiers in Microbiology, 2017, 8: 1336. DOI: 10.3389/fmicb.2017.01336
doi: 10.3389/fmicb.2017.01336
27 SUESS E, PLANER-FRIEDRICH B. Thioarsenate formation upon dissolution of orpiment and arsenopyrite[J]. Chemo-sphere, 2012, 89(11): 1390-1398. DOI: 10.1016/j.chemosphere.2012.05.109
doi: 10.1016/j.chemosphere.2012.05.109
28 ALI J D, GUATAME-GARCIA A, LEYBOURNE M I, et al. Dissolved thiolated arsenic formed by weathering of mine wastes[J]. Chemosphere, 2023, 321: 138124. DOI: 10.1016/j.chemosphere.2023.138124
doi: 10.1016/j.chemosphere.2023.138124
29 FAN C J, LIU G L, LONG Y M, et al. Thiolation in arsenic metabolism: a chemical perspective[J]. Metallomics, 2018, 10(10): 1368-1382. DOI: 10.1039/c8mt00231b
doi: 10.1039/c8mt00231b
30 DAI J, TANG Z, GAO A X, et al. Widespread occurrence of the highly toxic dimethylated monothioarsenate (DMMTA) in rice globally[J]. Environmental Science & Technology, 2022, 56(6): 3575-3586. DOI: 10.1021/acs.est.1c08394
doi: 10.1021/acs.est.1c08394
31 ZAKAZNOVA-HERZOG V P, SEWARD T M. A spectro-photometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22 ℃[J]. Geochimica et Cosmochimica Acta, 2012, 83: 48-60. DOI: 10.1016/j.gca.2011.12.022
doi: 10.1016/j.gca.2011.12.022
32 SUESS E, SCHEINOST A C, BOSTICK B C, et al. Discrimi-nation of thioarsenites and thioarsenates by X-ray absorption spectroscopy[J]. Analytical Chemistry, 2009, 81(20): 8318-8326. DOI: 10.1021/ac901094b
doi: 10.1021/ac901094b
33 COUTURE R M, ROSE J, KUMAR N, et al. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation[J]. Environ-mental Science & Technology, 2013, 47(11): 5652-5659. DOI: 10.1021/es3049724
doi: 10.1021/es3049724
34 HASHIMOTO Y, KANKE Y. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations[J]. Environmental Pollution, 2018, 238: 617-623. DOI: 10.1016/j.envpol.2018.03.039
doi: 10.1016/j.envpol.2018.03.039
35 COLINA BLANCO A E, KERL C F, PLANER-FRIEDRICH B. Detection of thioarsenates in rice grains and rice products[J]. Journal of Agricultural and Food Chemistry, 2021, 69(7): 2287-2294. DOI: 10.1021/acs.jafc.0c06853
doi: 10.1021/acs.jafc.0c06853
36 CONKLIN S D, FRICKE M W, CREED P A, et al. Investi-gation of the pH effects on the formation of methylated thio-arsenicals, and the effects of pH and temperature on their stability[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(5): 711-716. DOI: 10.1039/b713145c
doi: 10.1039/b713145c
37 SUN S T, XIE X J, LI J X, et al. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2020, 590: 125268. DOI: 10.1016/j.jhydrol.2020.125268
doi: 10.1016/j.jhydrol.2020.125268
38 BAKER M D, INNISS W E, MAYFIELD C I, et al. Effect of pH on the methylation of mercury and arsenic by sediment microorganisms[J]. Environmental Technology Letters, 1983, 4(2): 89-100.
39 HÄRTIG C, PLANER-FRIEDRICH B. Thioarsenate trans-formation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring[J]. Environmental Science & Technology, 2012, 46(8): 4348-4356. DOI: 10.1021/es204277j
doi: 10.1021/es204277j
40 CHEN C, YANG B Y, SHEN Y, et al. Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils[J]. Soil Biology & Biochemistry, 2021, 154: 108129. DOI: 10.1016/j.soilbio.2021.108129
doi: 10.1016/j.soilbio.2021.108129
41 WANG J J, HALDER D, WEGNER L, et al. Redox depend-ence of thioarsenate occurrence in paddy soils and the rice rhizosphere[J]. Environmental Science & Technology, 2020, 54(7): 3940-3950. DOI: 10.1021/acs.est.9b05639
doi: 10.1021/acs.est.9b05639
42 ZHAO F J, ZHU Y G, MEHARG A A. Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms[J]. Environmental Science & Technology, 2013, 47(9): 3957-3966. DOI: 10.1021/es304295n
doi: 10.1021/es304295n
43 XU X W, WANG P, ZHANG J, et al. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction[J]. Envi-ronmental Pollution, 2019, 251: 952-960. DOI: 10.1016/j.envpol.2019.05.086
doi: 10.1016/j.envpol.2019.05.086
44 BESOLD J, BISWAS A, SUESS E, et al. Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat[J]. Environmental Science & Tech-nology, 2018, 52(13): 7317-7326. DOI: 10.1021/acs.est.8b01542
doi: 10.1021/acs.est.8b01542
45 COUTURE R M, VAN CAPPELLEN P. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments[J]. Journal of Hazardous Materials, 2011, 189(3): 647-652. DOI: 10.1016/j.jhazmat.2011.02.029
doi: 10.1016/j.jhazmat.2011.02.029
46 NGHIEM A A, PROMMER H, MOZUMDER M R H, et al. Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides[J]. Nature Water, 2023, 1(2): 151-165. DOI: 10.1038/s44221-022-00022-z
doi: 10.1038/s44221-022-00022-z
47 YAN K T, PLANER-FRIEDRICH B, KNOBLOCH P V T, et al. Effects of thiolation and methylation on arsenic sorption to geothermal sediments[J]. Science of the Total Environment, 2022, 827: 154016. DOI: 10.1016/j.scitotenv.2022.154016
doi: 10.1016/j.scitotenv.2022.154016
48 KUMAR N, NOËL V, BESOLD J, et al. Mechanism of arsenic partitioning during sulfidation of As-sorbed ferrihydrite nanoparticles[J]. ACS Earth and Space Chemistry, 2022, 6(7): 1666-1673. DOI: 10.1021/acsearthspacechem.1c00373
doi: 10.1021/acsearthspacechem.1c00373
49 PLANER-FRIEDRICH B, SCHALLER J, WISMETH F, et al. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies[J]. Environmental Science & Technology, 2018, 52(10): 5931-5939. DOI: 10.1021/acs.est.8b00948
doi: 10.1021/acs.est.8b00948
50 廖丹雪,单慧媚,张进贤,等.一硫代砷在针铁矿上的吸附及影响因素[J].环境科学,2020,41(7):3337-3344. DOI:10.13227/j.hjkx.202001132
LIAO D X, SHAN H M, ZHANG J X, et al. Characteristics and influencing factors of monothioarsenate adsorption on goethite[J]. Environmental Science, 2020, 41(7): 3337-3344. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202001132
51 廖丹雪,单慧媚,彭三曦,等.一硫代砷酸盐在介质上的吸附特征及机制[J].环境科学,2020,41(1):284-292. DOI:10.13227/j.hjkx.201905239
LIAO D X, SHAN H M, PENG S X, et al. Characteristics and mechanism of monothioarsenate adsorption on sand, sediment, and goethite[J]. Environmental Science, 2020, 41(1): 284-292. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201905239
52 张进贤,单慧媚,廖丹雪,等.磷酸盐对土壤吸附一硫代砷的影响[J].中国环境科学,2022,42(8):3849-3857. DOI:10.19674/j.cnki.issn1000-6923.2022.0153
ZHANG J X, SHAN H M, LIAO D X, et al. Effect of phosphate on monothiosarsenate adsorption to soil[J]. China Environmental Science, 2022, 42(8): 3849-3857. (in Chinese with English abstract)
doi: 10.19674/j.cnki.issn1000-6923.2022.0153
53 CHEN C, YU Y, WANG Y J, et al. Reduction of dimethylar-senate to highly toxic dimethylarsenite in paddy soil and rice plants[J]. Environmental Science & Technology, 2023, 57(1): 822-830. DOI: 10.1021/acs.est.2c07418
doi: 10.1021/acs.est.2c07418
54 MÜLLER V, CHAVEZ-CAPILLA T, FELDMANN J, et al. Increasing temperature and flooding enhance arsenic release and biotransformations in Swiss soils[J]. Science of the Total Environment, 2022, 838: 156049. DOI: 10.1016/j.scitotenv.2022.156049
doi: 10.1016/j.scitotenv.2022.156049
55 LOMAX C, LIU W J, WU L Y, et al. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672. DOI: 10.1111/j.1469-8137.2011.03956.x
doi: 10.1111/j.1469-8137.2011.03956.x
56 WANG L X, GUO Q H, WU G, et al. Methanogens-driven arsenic methylation preceding formation of methylated thioarse-nates in sulfide-rich hot springs[J]. Environmental Science & Technology, 2023, 57(19): 7410-7420. DOI: 10.1021/acs.est.2c08814
doi: 10.1021/acs.est.2c08814
57 CHEN C, YANG B Y, GAO A X, et al. Suppression of methanogenesis in paddy soil increases dimethylarsenate accumulation and the incidence of straighthead disease in rice[J]. Soil Biology & Biochemistry, 2022, 169: 108689. DOI: 10.1016/j.soilbio.2022.108689
doi: 10.1016/j.soilbio.2022.108689
58 CHEN J, YOSHINAGA M, ROSEN B P. The antibiotic action of methylarsenite is an emergent property of microbial communities[J]. Molecular Microbiology, 2019, 111(2): 487-494. DOI: 10.1111/mmi.14169
doi: 10.1111/mmi.14169
59 STONE R. Arsenic and paddy rice: a neglected cancer risk?[J]. Science, 2008, 321(5886): 184-185. DOI: 10.1126/science.321.5886.184
doi: 10.1126/science.321.5886.184
60 CHEN C, YANG B Y, GAO A X, et al. Transformation of arsenic species by diverse endophytic bacteria of rice roots[J]. Environmental Pollution, 2022, 309: 119825. DOI: 10.1016/j.envpol.2022.119825
doi: 10.1016/j.envpol.2022.119825
61 TANG X J, LI L Y, WU C, et al. The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers[J]. Environmental Pollution, 2020, 264: 114679. DOI: 10.1016/j.envpol.2020.114679
doi: 10.1016/j.envpol.2020.114679
62 LEE C H, HSIEH Y C, LIN T H, et al. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice[J]. Plant and Soil, 2013, 363(1/2): 231-241. DOI: 10.1007/s11104-012-1308-2
doi: 10.1007/s11104-012-1308-2
63 KERL C F, BALLARAN T B, PLANER-FRIEDRICH B. Iron plaque at rice roots: no barrier for methylated thioarsenates[J]. Environmental Science & Technology, 2019, 53(23): 13666-13674. DOI: 10.1021/acs.est.9b04158
doi: 10.1021/acs.est.9b04158
64 PLANER-FRIEDRICH B, KERL C F, COLINA BLANCO A E, et al. Dimethylated thioarsenates: a potentially dangerous blind spot in current worldwide regulatory limits for arsenic in rice[J]. Journal of Agricultural and Food Chemistry, 2022, 70(31): 9610-9618. DOI: 10.1021/acs.jafc.2c02425
doi: 10.1021/acs.jafc.2c02425
65 PISCHKE E, BAROZZI F, COLINA BLANCO A E, et al. Dimethylmonothioarsenate is highly toxic for plants and readily translocated to shoots[J]. Environmental Science & Technology, 2022, 56(14): 10072-10083. DOI: 10.1021/acs.est.2c01206
doi: 10.1021/acs.est.2c01206
66 KERL C F, SCHINDELE R A, BRÜGGENWIRTH L, et al. Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total arsenic translocation in rice plants[J]. Environmental Science & Technology, 2019, 53(10): 5787-5796. DOI: 10.1021/acs.est.9b00592
doi: 10.1021/acs.est.9b00592
67 PLANER-FRIEDRICH B, KÜHNLENZ T, HALDER D, et al. Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana [J]. Environmental Science & Technology, 2017, 51(12): 7187-7196. DOI: 10.1021/acs.est.6b06028
doi: 10.1021/acs.est.6b06028
68 陈焱山,贾梦茹,曹越,等.蜈蚣草砷富集的分子机制研究进展[J].农业环境科学学报,2018,37(7):1402-1408. DOI:10.11654/jaes.2018-0563
CHEN Y S, JIA M R, CAO Y, et al. Advances in molecular mechanisms of arsenic hyperaccumulation in Pteris vittata [J]. Journal of Agro-Environment Science, 2018, 37(7): 1402-1408. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-0563
69 张田,闫慧莉,何振艳.蜈蚣草中砷超富集的分子机制研究进展[J].生物工程学报,2020,36(3):397-406. DOI:10.13345/j.cjb.190374
ZHANG T, YAN H L, HE Z Y. Advances in molecular mechanisms of arsenic hyperaccumulation of Pteris vittata L.[J]. Chinese Journal of Biotechnology, 2020, 36(3): 397-406. (in Chinese with English abstract)
doi: 10.13345/j.cjb.190374
70 MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. PNAS, 2008, 105(29): 9931-9935. DOI: 10.1073/pnas.0802361105
doi: 10.1073/pnas.0802361105
71 ACKERMAN A H, CREED P A, PARKS A N, et al. Com-parison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice[J]. Environmental Science & Technology, 2005, 39(14): 5241-5246. DOI: 10.1021/es048150n
doi: 10.1021/es048150n
72 MEBANE C A, CHOWDHURY M J, DE SCHAMPHELAERE K A C, et al. Metal bioavailability models: current status, lessons learned, considerations for regulatory use, and the path forward[J]. Environmental Toxicology and Chemistry, 2020, 39(1): 60-84. DOI: 10.1002/etc.4560
doi: 10.1002/etc.4560
73 ANDREWS C W, BENNETT L, YU L X. Predicting human oral bioavailability of a compound: development of a novel quantitative structure-bioavailability relationship[J]. Pharma-ceutical Research, 2000, 17(6): 639-644. DOI: 10.1023/a:1007556711109
doi: 10.1023/a:1007556711109
74 RAAB A, KUBACHKA K, STROHMAIER M, et al. New arsenic compound identified in rice grain: dimethylarsonyl-dimethylarsinic acid[J]. Environmental Chemistry, 2023, 20(1/2): 74-82. DOI: 10.1071/EN22063
doi: 10.1071/EN22063
75 HANSEN H R, RAAB A, JASPARS M, et al. Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMA(Ⅲ)] and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity[J]. Chemical Research in Toxicology, 2004, 17(8): 1086-1091. DOI: 10.1021/tx049978q
doi: 10.1021/tx049978q
76 RUBIN S S D C, ALAVA P, ZEKKER I, et al. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract[J]. Environmental Health Perspectives, 2014, 122(8): 817-822. DOI: 10.1289/ehp.1307759
doi: 10.1289/ehp.1307759
77 RAML R, RUMPLER A, GOESSLER W, et al. Thio-dime-thylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh[J]. Toxicology and Applied Pharmacology, 2007, 222(3): 374-380. DOI: 10.1016/j.taap.2006.12.014
doi: 10.1016/j.taap.2006.12.014
78 MANDAL B K, SUZUKI K T, ANZAI K, et al. A SEC-HPLC-ICP MS hyphenated technique for identification of sulfur-containing arsenic metabolites in biological samples[J]. Journal of Chromatography B, 2008, 874(1/2): 64-76. DOI: 10.1016/j.jchromb.2008.09.004
doi: 10.1016/j.jchromb.2008.09.004
79 NARANMANDURA H, OGRA Y, IWATA K, et al. Evidence for toxicity differences between inorganic arsenite and thi-oarsenicals in human bladder cancer cells[J]. Toxicology and Applied Pharmacology, 2009, 238(2): 133-140. DOI: 10.1016/j.taap.2009.05.006
doi: 10.1016/j.taap.2009.05.006
[1] 王诗怡,刘西西,金龙,应杰政,李志永,黄捷,童晓红,王以锋,张健. 稻米油脂遗传改良研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 329-338.
[2] 何羽喆,徐善斌,陈彦宇,杨雪,段二超,滕烜,王益华,董慧,万建民. 水稻糯性突变体r162的鉴定与基因定位[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 368-381.
[3] 庞悦涵,应逸宁,徐非非,包劲松. 高温胁迫下水稻胚乳磷酸化与泛素化蛋白质组学联合分析[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 382-392.
[4] 徐宏发,刘正辉,张红梅,程旺大. 基于近红外光谱技术的水稻节间主要碳氮代谢组分分析[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 393-405.
[5] 刘荣,李兵杰,王智烨. 植物响应缺磷胁迫的分子机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 455-468.
[6] 那好为,刘瑛涵,赵璐峰,唐建军,胡亮亮,陈欣. 水稻品种间作对甲烷排放的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 270-279.
[7] 邵美红,程楚,柯汉云,黄世文,李春寿. 阿维菌素与井冈霉素混配对水稻主要病虫害的防治效果[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 308-316.
[8] 祁通,汤胜,周静杰,马庆旭,吴良欢. 长期覆膜旱作和施用包膜尿素对水稻产量、氮肥利用率及土壤养分的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 109-122.
[9] 温佳,梁喜凤,王永维. 基于改进的DeepLabV3+网络模型的杂交水稻育种父母本语义分割研究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 893-902.
[10] 曾慧玲,莫祖意,蒲巧贤,王家澍,范凯,李兆伟. 水稻OsSPL3启动子克隆及表达分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 319-327.
[11] 杨临泽,寿惠霞. 水稻根系分泌物脱氧麦根酸对根际和根内细菌群落组成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 376-388.
[12] 吕梦琪, Sunghwan JUNG, 麻志宏, 万亮, 孙大伟, 岑海燕. 基于无损力学平台的水稻倒伏表型分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 129-140.
[13] 张健男,王依名,张洁净,陈磊,罗金燕,易建平,李斌,安千里. 利用实时荧光定量PCR和数字PCR检测鉴定水稻细菌性条斑病菌[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 55-64.
[14] 巩龙达,陈凯,李丹,蔡梅,王京文,张奇春. 复合钝化剂施用水平对镉污染农田土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 359-368.
[15] 谢鹏尧,富昊伟,唐政,麻志宏,岑海燕. 基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 415-428.