Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 805-816    DOI: 10.3785/j.issn.1008-9209.2023.05.123
动物科学与动物医学     
泌乳盛期奶牛肝脏脂肪变性影响生产性能的代谢机制
刘潇怡(),王迪铭,孙会增,刘建新()
浙江大学动物科学学院,浙江省奶牛遗传改良与乳品质研究重点实验室,浙江 杭州 310058
Metabolic mechanism of hepatic steatosis affecting production performance of dairy cows during peak lactation
Xiaoyi LIU(),Diming WANG,Huizeng SUN,Jianxin LIU()
Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(5903 KB)   HTML
摘要:

为揭示奶牛肝脏脂肪变性影响生产性能的代谢机制,以健康奶牛为对照,本研究比较分析了肝脏轻度脂肪变性奶牛的生理生化指标和转录组测序结果。肝脏组织学观察发现,当脂肪变性时,苏木精-伊红染色的肝脏组织切片中可观察到大小不等的近圆形空泡。与健康奶牛相比,肝脏轻度脂肪变性奶牛的脂肪矫正乳、能量矫正乳、乳脂含量均显著降低,而血浆生化指标无明显差异。对肝脏组织进行转录组测序,共发现241个差异表达基因(differentially expressed genes, DEGs),其中表达下调的DEGs有136个,表达上调的DEGs有105个。通过基因本体(gene ontology, GO)功能注释发现,DEGs主要富集于脂质代谢相关的生物学过程与分子功能中;通过京都基因和基因组数据库(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析发现,DEGs显著富集于类固醇生物合成、胆固醇代谢、非酒精性脂肪性肝病等脂质代谢相关通路。另外,对全体基因进行基因集富集分析(gene set enrichment analysis, GSEA)发现,基因主要富集于脂肪酸延长通路、过氧化物酶体增殖物激活受体信号通路等影响脂质代谢的重要通路。上述结果表明,肝脏脂肪变性影响了奶牛肝脏的脂质代谢,进而影响了奶牛全身代谢,引起了奶牛乳脂含量等生产性能改变。

关键词: 高产奶牛泌乳盛期脂肪变性肝脏转录组    
Abstract:

In order to explore the metabolic mechanism of hepatic steatosis affecting production performance of dairy cows, the physiological and biochemical indexes and transcriptome sequencing results of dairy cows with mild hepatic steatosis were compared and analyzed, with healthy dairy cows used as controls. Histological examination of liver tissue revealed that when steatosis occurred, hematoxylin-eosin stained sections of liver tissue showed nearly round vacuoles of varying sizes. Compared with those of healthy dairy cows, the yields of fat-corrected milk, energy-corrected milk and the milk fat content of dairy cows with mild hepatic steatosis were significantly lower (p<0.01), and there were no significant differences in plasma biochemical indexes. A total of 241 differentially expressed genes (DEGs) were found in liver by transcriptome sequencing, including 136 down-regulated DEGs and 105 up-regulated DEGs. Gene ontology (GO) functional annotation showed that DEGs were enriched mainly in biological processes and molecular functions related to lipid metabolism. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that DEGs were enriched in steroid biosynthesis, cholesterol metabolism, non-alcoholic fatty liver disease and other lipid metabolism-related pathways. In addition, gene set enrichment analysis (GSEA) showed that genes were enriched in important pathways affecting lipid metabolism, such as fatty acid elongation and peroxisome proliferator-activated receptor signaling pathway. The results suggested that mild hepatic steatosis affected the lipid metabolic process of dairy cows, and then affected the metabolism of whole body of dairy cows, resulting in differences in production performance of dairy cows such as milk fat content.

Key words: high-yielding dairy cows    peak lactation    steatosis    liver    transcriptome
收稿日期: 2023-05-12 出版日期: 2024-10-31
CLC:  S823.9  
基金资助: 国家自然科学基金项目(31930107)
通讯作者: 刘建新     E-mail: 22117011@zju.edu.cn;liujx@zju.edu.cn
作者简介: 刘潇怡(https://orcid.org/0009-0000-8968-2017),E-mail:22117011@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘潇怡
王迪铭
孙会增
刘建新

引用本文:

刘潇怡,王迪铭,孙会增,刘建新. 泌乳盛期奶牛肝脏脂肪变性影响生产性能的代谢机制[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 805-816.

Xiaoyi LIU,Diming WANG,Huizeng SUN,Jianxin LIU. Metabolic mechanism of hepatic steatosis affecting production performance of dairy cows during peak lactation. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 805-816.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.05.123        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/805

图1  健康奶牛(A1~A6 )与肝脏轻度脂肪变性奶牛(B1~B6 )肝脏组织的HE染色切片箭头指示处表示脂滴。

项目

Item

健康奶牛

Healthy dairy cow

肝脏轻度脂肪变性奶牛

Dairy cow with mild hepatic steatosis

均值标准误

SEM

p

p-value

奶产量 Milk yield/(kg/d)44.245.50.9280.53
脂肪矫正乳 FCM/(kg/d)45.538.31.41<0.01
能量矫正乳 ECM/(kg/d)46.039.81.25<0.01
乳成分 Milk composition
乳脂 Milk fat/%3.652.750.191<0.01
乳蛋白 Milk protein/%2.942.930.0670.45
乳糖 Milk sugar/%5.045.280.0650.06
尿素氮 UN/(mg/dL)12.211.10.620.41
表1  肝脏轻度脂肪变性对奶牛生产性能及乳成分的影响

项目

Item

健康奶牛

Healthy dairy cows

肝脏轻度脂肪变性奶牛

Dairy cows with mild hepatic steatosis

均值标准误

SEM

p

p-value

葡萄糖 GLU/(mmol/L)3.643.570.1050.59
甘油三酯 TG/(mmol/L)0.130.120.0060.70
β-羟基丁酸 BHBA/(mmol/L)54857121.10.61
非酯化脂肪酸 NEFA/(μmol/L)32435664.80.13
胆固醇 CHOL/(mmol/L)5.946.740.3610.29
丙氨酸转氨酶 ALT/(U/L)3.863.690.2210.72
天冬氨酸转氨酶 AST/(U/L)4.364.740.4080.67
碱性磷酸酶 ALP/(U/L)3.132.540.2070.17
蛋白 TP/(g/L)63.165.81.760.47
白蛋白 ALB/(g/L)37.438.61.100.61
血尿素氮 BUN(mmol/L)4.624.370.1960.54
肌酐 CREA/(μmol/L)49.248.71.890.90
总胆红素 TBil/(μmol/L)3.633.150.2020.26
表 2  肝脏轻度脂肪变性对奶牛血浆生化指标的影响

项目

Item

健康奶牛

Healthy dairy cow

肝脏轻度脂肪变性奶牛

Dairy cow with mild hepatic steatosis

均值标准误

SEM

p

p-value

总抗氧化能力 T-AOC/(μmol/mL)24927011.70.41
超氧化物歧化酶 SOD/(U/mL)1501534.70.75
谷胱甘肽过氧化物酶 GSH-Px/(U/mL)1161146.40.91
血红素加氧酶-1 HO-1/(ng/mL)7.829.680.6300.15
丙二醛 MDA/(μmol/mL)5.074.160.3540.27
一氧化氮 NO/(μmol/L)6.998.960.8300.25
诱导型一氧化氮合酶 iNOS/(U/mL)20.018.40.780.33
内皮型一氧化氮合酶 eNOS/(ng/mL)5.206.640.433<0.10
表3  肝脏轻度脂肪变性对奶牛机体氧化平衡的影响
图2  肝脏轻度脂肪变性奶牛DEGs的火山图红色圆点代表表达上调的DEGs(105个),绿色圆点代表表达下调的DEGs(136个)。
图3  DEGs的GO功能注释柱状图
图4  DEGs的KEGG通路富集分析气泡图
图5  脂肪酸延长、PPAR信号通路与氧化磷酸化的富集分析

通路

Pathway

基因

Gene

基因中文全称

Chinese full name of gene

log2 (FC)

p

p-value

脂肪酸延长通路

Fatty acid elongation pathway

ACAA2乙酰辅酶A酰基转移酶2-0.180.06
LOC508455雌二醇17-β-脱氢酶12样-0.190.14
HADH羟基辅酶A脱氢酶-0.190.03
ELOVL6超长链脂肪酸延伸酶6-0.210.27
THEM4硫酯酶超家族成员4-0.230.14
ACOT4酰基辅酶A硫酯酶4-0.360.01
HSD17B1217-β-羟基类固醇脱氢酶12-0.400.12
HACD13-羟酰辅酶A脱水酶1-0.440.01
ACOT2酰基辅酶A硫酯酶2-0.800.06

PPAR信号通路

PPAR signaling pathway

FABP5脂肪酸结合蛋白51.060.02
UBC泛素C0.660.11
CPT1B肉碱棕榈酰基转移酶1B0.610.05
CYP7A1细胞色素P450家族7亚家族A成员10.550.07
HMGCS13-羟基-3-甲基戊二酰辅酶A合成酶10.540.05
PLIN5脂滴包被蛋白50.460.11
ANGPTL4血管生成素样蛋白40.440.12
APOA5载脂蛋白A50.430.00
CYP8B1细胞色素P450家族8亚家族B成员10.430.00
SLC27A1溶质载体家族27成员10.350.07
RXRB维甲酸X受体β0.310.03
ACSL1酰基辅酶A合成酶长链家族成员10.300.17
ACOX2酰基辅酶A氧化酶20.260.04
CPT1A肉碱棕榈酰基转移酶1A0.240.15
PDPK13-磷酸肌醇依赖性蛋白激酶10.230.07
ACOX3酰基辅酶A氧化酶30.220.06
SLC27A2溶质载体家族27成员20.210.16
CYP27A1细胞色素P450家族27亚家族A成员10.200.16
表4  脂肪酸延长通路与PPAR信号通路中的基因表达情况
1 DRACKLEY J K. Biology of dairy cows during the transition period: the final frontier?[J]. Journal of Dairy Science, 1999, 82(11): 2259-2273.
2 BOBE G, YOUNG J W, BEITZ D C. Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J]. Journal of Dairy Science, 2004, 87(10): 3105-3124. DOI: 10.3168/jds.S0022-0302(04)73446-3
doi: 10.3168/jds.S0022-0302(04)73446-3
3 GERSPACH C, IMHASLY S, KLINGLER R, et al. Variation in fat content between liver lobes and comparison with histo-pathological scores in dairy cows with fatty liver[J]. BMC Veterinary Research, 2017, 13: 98. DOI: 10.1186/s12917-017-1004-9
doi: 10.1186/s12917-017-1004-9
4 National Research Council. Nutrient Requirements of Dairy Cattle[M]. 7th ed. Washington, D.C.: National Academy Press, 2001.
5 韩印如,李斌,刘辉放,等.肝脏、乳腺和体脂活体采样对奶牛生产性能影响研究[J].畜牧与兽医,2019,51(11):29-32.
HAN Y R, LI B, LIU H F, et al. The effects of biopsy sampling of liver, mammary gland and body fat on the performance of dairy cows[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(11): 29-32. (in Chinese with English abstract)
6 RUKKWAMSUK T, WENSING T, GEELEN M J H. Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows[J]. Journal of Dairy Science, 1999, 82(3): 500-505.
7 DONG J H, YUE K M, LOOR J J, et al. Increased adipose tissue lipolysis in dairy cows with fatty liver is associated with enhanced autophagy activity[J]. Journal of Dairy Science, 2022, 105(2): 1731-1742. DOI: 10.3168/jds.2021-20445
doi: 10.3168/jds.2021-20445
8 WEBER C, HAMETNER C, TUCHSCHERER A, et al. Vari-ation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows[J]. Journal of Dairy Science, 2013, 96(1): 165-180. DOI: 10.3168/jds.2012-5574
doi: 10.3168/jds.2012-5574
9 HAMMON H M, STÜRMER G, SCHNEIDER F, et al. Perfor-mance and metabolic and endocrine changes with emphasis on glucose metabolism in high-yielding dairy cows with high and low fat content in liver after calving[J]. Journal of Dairy Science, 2009, 92(4): 1554-1566. DOI: 10.3168/jds.2008-1634
doi: 10.3168/jds.2008-1634
10 ARSHAD U, SANTOS J E P. Hepatic triacylglycerol associ-ations with production and health in dairy cows[J]. Journal of Dairy Science, 2022, 105(6): 5393-5409. DOI: 10.3168/jds.2021-21031
doi: 10.3168/jds.2021-21031
11 PIANTONI P, VANDEHAAR M J. Symposium review: the impact of absorbed nutrients on energy partitioning throughout lactation[J]. Journal of Dairy Science, 2023, 106(3): 2167-2180. DOI: 10.3168/jds.2022-22500
doi: 10.3168/jds.2022-22500
12 ROLO A P, TEODORO J S, PALMEIRA C M. Role of oxidative stress in the pathogenesis of nonalcoholic steato-hepatitis[J]. Free Radical Biology & Medicine, 2012, 52(1): 59-69. DOI: 10.1016/j.freeradbiomed.2011.10.003
doi: 10.1016/j.freeradbiomed.2011.10.003
13 GUO H L, SUN J Y, LI D Y, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation[J]. Biomedicine & Pharma-cotherapy, 2019, 112: 108704. DOI: 10.1016/j.biopha.2019.108704
doi: 10.1016/j.biopha.2019.108704
14 CHEN Z, TIAN R F, SHE Z G, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radical Biology & Medicine, 2020, 152: 116-141. DOI: 10.1016/j.freeradbiomed.2020.02.025
doi: 10.1016/j.freeradbiomed.2020.02.025
15 LEV-COHAIN N, SAPIR G, HARRIS T, et al. Real-time ALT and LDH activities determined in viable precision-cut mouse liver slices using hyperpolarized[1-13C]pyruvate—implications for studies on biopsied liver tissues[J]. NMR in Biomedicine, 2019, 32(2): e4043. DOI: 10.1002/nbm.4043
doi: 10.1002/nbm.4043
16 XU C, SUN L W, XIA C, et al. 1H-nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with fatty liver[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(2): 219-229. DOI: 10.5713/ajas.15.0439
doi: 10.5713/ajas.15.0439
17 ANDJELIĆ B, DJOKOVIĆ R, CINCOVIĆ M, et al. Rela-tionships between milk and blood biochemical parameters and metabolic status in dairy cows during lactation[J]. Metabolites, 2022, 12(8): 733. DOI: 10.3390/metabo12080733
doi: 10.3390/metabo12080733
18 SEJERSEN H, SØRENSEN M T, LARSEN T, et al. Liver protein expression in dairy cows with high liver triglycerides in early lactation[J]. Journal of Dairy Science, 2012, 95(5): 2409-2421. DOI: 10.3168/jds.2011-4604
doi: 10.3168/jds.2011-4604
19 KALAITZAKIS E, ROUBIES N, PANOUSIS N, et al. Clinicopathologic evaluation of hepatic lipidosis in peripar-turient dairy cattle[J]. Journal of Veterinary Internal Medicine, 2007, 21(4): 835-845. DOI: 10.1892/0891-6640(2007)21 [835: ceohli]2.0.co;2
doi: 10.1892/0891-6640(2007)21
20 BIONAZ M, TREVISI E, CALAMARI L, et al. Plasma paraoxonase, health, inflammatory conditions, and liver func-tion in transition dairy cows[J]. Journal of Dairy Science, 2007, 90(4): 1740-1750. DOI: 10.3168/jds.2006-445
doi: 10.3168/jds.2006-445
21 PATEL N R, SUTHAR A, PRAJAPATI A S, et al. Hemato-biochemical and ultrasonographic evaluation of hepatic lipidosis in dairy buffaloes[J]. Tropical Animal Health and Production, 2022, 54(5): 329. DOI: 10.1007/s11250-022-03322-4
doi: 10.1007/s11250-022-03322-4
22 WANG D Q H, PORTINCASA P, NEUSCHWANDER-TETRI B A. Steatosis in the liver[J]. Comprehensive Physiology, 2013, 3(4): 1493-1532. DOI: 10.1002/cphy.c130001
doi: 10.1002/cphy.c130001
23 KALAITZAKIS E, PANOUSIS N, ROUBIES N, et al. Clini-copathological evaluation of downer dairy cows with fatty liver[J]. The Canadian Veterinary Journal, 2010, 51(6): 615-622.
24 LI Y, ZOU S P, DING H Y, et al. Low expression of sirtuin 1 in the dairy cows with mild fatty liver alters hepatic lipid metabolism[J]. Animals, 2020, 10(4): 560. DOI: 10.3390/ani10040560
doi: 10.3390/ani10040560
25 HA N T, DRÖGEMÜLLER C, REIMER C, et al. Liver tran-scriptome analysis reveals important factors involved in the metabolic adaptation of the transition cow[J]. Journal of Dairy Science, 2017, 100(11): 9311-9323. DOI: 10.3168/jds.2016-12454
doi: 10.3168/jds.2016-12454
26 GAO S T, GIRMA D D, BIONAZ M, et al. Hepatic trans-criptomic adaptation from prepartum to postpartum in dairy cows[J]. Journal of Dairy Science, 2021, 104(1): 1053-1072. DOI: 10.3168/jds.2020-19101
doi: 10.3168/jds.2020-19101
27 MURONDOTI A, JORRITSMA R, BEYNEN A C, et al. Unrestricted feed intake during the dry period impairs the postpartum oxidation and synthesis of fatty acids in the liver of dairy cows[J]. Journal of Dairy Science, 2004, 87(3): 672-679. DOI: 10.3168/jds.S0022-0302(04)73210-5
doi: 10.3168/jds.S0022-0302(04)73210-5
28 梁祎凡,金海国,曹阳.羊ACOX2基因功能的研究进展[J].当代畜牧,2018(24):49-51.
LIANG Y F, JIN H G, CAO Y. Advances in research on the function of ACOX2 gene in sheep[J]. Contemporary Animal Husbandry, 2018(24): 49-51. (in Chinese with English abstract)
29 DUSZKA K, GREGOR A, GUILLOU H, et al. Peroxisome proliferator-activated receptors and caloric restriction—common pathways affecting metabolism, health, and longevity[J]. Cells, 2020, 9(7): 1708. DOI: 10.3390/cells9071708
doi: 10.3390/cells9071708
30 SAWAI M, UCHIDA Y, OHNO Y, et al. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways[J]. The Journal of Biological Chemistry, 2017, 292(37): 15538-15551. DOI: 10.1074/jbc.M117.803171
doi: 10.1074/jbc.M117.803171
31 BLONDELLE J, OHNO Y, GACHE V, et al. HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth[J]. Journal of Molecular Cell Biology, 2015, 7(5): 429-440. DOI: 10.1093/jmcb/mjv049
doi: 10.1093/jmcb/mjv049
32 纪艳芹. ACAA2基因对绵羊前体脂肪细胞分化的影响及其相关育种材料创制[D].扬州:扬州大学,2017.
JI Y Q. The effect of ACAA2 gene on sheep preadipocyte differentiation and the creation of related breeding materials[D]. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract)
[1] 周依帆,张希昭,周彦锋,徐东坡,王晨赫,郭世越,蒋书伦,尤洋. 大银鱼早期发育阶段微生物群落特征及其与免疫和代谢的关联[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 123-136.
[2] 马慧,马海杰,焦晨,李红叶. 不同抗性柑橘对野生型和柑橘链格孢毒素合成受阻褐斑病菌侵染的转录响应差异[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 787-801.
[3] 杨思语,宫子惠,胡仲远,张明方,杨景华. 甜瓜瓜类蚜传黄化病毒侵染响应基因鉴定[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 696-707.
[4] 金晶,闾怡清,何卫中,疏再发,叶俭慧,梁月荣. 不同遮阴处理对茶树叶片主要植物激素生物合成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 45-54.
[5] 陈一,冀飞,刘建新,王迪铭. 日粮添加硒代蛋氨酸锌对泌乳盛期奶牛泌乳性能和血浆生化指标的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 517-524.
[6] 祁博文,郭梦兰,卢合均,梅欢,赵汀,方磊. 2个四倍体栽培棉种冷胁迫响应基因的鉴定与比较分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 10-20.
[7] 陈国户,王浩,李广,唐小燕,汪承刚,张磊,侯金锋,袁凌云. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 677-686.
[8] 郭宇燕,张璐,赵心雨,胡东维,梁五生. 照光抑制稻曲病菌菌丝生长的转录组分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 571-581.
[9] 曹璇,郑晓冬. 盐胁迫培养下季也蒙毕赤酵母的转录组学差异分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 400-406.
[10] 王佳堃, 和文凤. 组学技术揭秘草食动物消化道真菌组成和功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 131-139.
[11] 朱家颖, 季梅, 杨斌, 泽桑梓. 薇甘菊颈盲蝽多聚半乳糖醛酸酶基因的转录组分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 24-32.
[12] 彭耀耀,侯春晓,詹仪花,黄莹莹,孙翔宇,翁晓燕. RIXI过量表达转基因水稻的全基因组表达谱分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 643-653.
[13] 鲍林飞,王新星,何健瑜,范美华,高鹏,廖智. 基于Illumina平台的厚壳贻贝外套膜转录组从头测序[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 394-406.
[14] 朱乾浩, 丹尼·卢埃林, 印·威尔逊. 高通量测序技术在多倍体作物基因组学研究中的应用(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 355-369.
[15] 周国艳, 胡望雄, 徐建红*, 薛庆中*. 整合多个组学(omics)分析植物代谢产物及其功能[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 237-245.