动物科学与动物医学 |
|
|
|
|
泌乳盛期奶牛肝脏脂肪变性影响生产性能的代谢机制 |
刘潇怡(),王迪铭,孙会增,刘建新() |
浙江大学动物科学学院,浙江省奶牛遗传改良与乳品质研究重点实验室,浙江 杭州 310058 |
|
Metabolic mechanism of hepatic steatosis affecting production performance of dairy cows during peak lactation |
Xiaoyi LIU(),Diming WANG,Huizeng SUN,Jianxin LIU() |
Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China |
引用本文:
刘潇怡,王迪铭,孙会增,刘建新. 泌乳盛期奶牛肝脏脂肪变性影响生产性能的代谢机制[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 805-816.
Xiaoyi LIU,Diming WANG,Huizeng SUN,Jianxin LIU. Metabolic mechanism of hepatic steatosis affecting production performance of dairy cows during peak lactation. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 805-816.
链接本文:
https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.05.123
或
https://www.zjujournals.com/agr/CN/Y2024/V50/I5/805
|
1 |
DRACKLEY J K. Biology of dairy cows during the transition period: the final frontier?[J]. Journal of Dairy Science, 1999, 82(11): 2259-2273.
|
2 |
BOBE G, YOUNG J W, BEITZ D C. Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J]. Journal of Dairy Science, 2004, 87(10): 3105-3124. DOI: 10.3168/jds.S0022-0302(04)73446-3
doi: 10.3168/jds.S0022-0302(04)73446-3
|
3 |
GERSPACH C, IMHASLY S, KLINGLER R, et al. Variation in fat content between liver lobes and comparison with histo-pathological scores in dairy cows with fatty liver[J]. BMC Veterinary Research, 2017, 13: 98. DOI: 10.1186/s12917-017-1004-9
doi: 10.1186/s12917-017-1004-9
|
4 |
National Research Council. Nutrient Requirements of Dairy Cattle[M]. 7th ed. Washington, D.C.: National Academy Press, 2001.
|
5 |
韩印如,李斌,刘辉放,等.肝脏、乳腺和体脂活体采样对奶牛生产性能影响研究[J].畜牧与兽医,2019,51(11):29-32. HAN Y R, LI B, LIU H F, et al. The effects of biopsy sampling of liver, mammary gland and body fat on the performance of dairy cows[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(11): 29-32. (in Chinese with English abstract)
|
6 |
RUKKWAMSUK T, WENSING T, GEELEN M J H. Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows[J]. Journal of Dairy Science, 1999, 82(3): 500-505.
|
7 |
DONG J H, YUE K M, LOOR J J, et al. Increased adipose tissue lipolysis in dairy cows with fatty liver is associated with enhanced autophagy activity[J]. Journal of Dairy Science, 2022, 105(2): 1731-1742. DOI: 10.3168/jds.2021-20445
doi: 10.3168/jds.2021-20445
|
8 |
WEBER C, HAMETNER C, TUCHSCHERER A, et al. Vari-ation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows[J]. Journal of Dairy Science, 2013, 96(1): 165-180. DOI: 10.3168/jds.2012-5574
doi: 10.3168/jds.2012-5574
|
9 |
HAMMON H M, STÜRMER G, SCHNEIDER F, et al. Perfor-mance and metabolic and endocrine changes with emphasis on glucose metabolism in high-yielding dairy cows with high and low fat content in liver after calving[J]. Journal of Dairy Science, 2009, 92(4): 1554-1566. DOI: 10.3168/jds.2008-1634
doi: 10.3168/jds.2008-1634
|
10 |
ARSHAD U, SANTOS J E P. Hepatic triacylglycerol associ-ations with production and health in dairy cows[J]. Journal of Dairy Science, 2022, 105(6): 5393-5409. DOI: 10.3168/jds.2021-21031
doi: 10.3168/jds.2021-21031
|
11 |
PIANTONI P, VANDEHAAR M J. Symposium review: the impact of absorbed nutrients on energy partitioning throughout lactation[J]. Journal of Dairy Science, 2023, 106(3): 2167-2180. DOI: 10.3168/jds.2022-22500
doi: 10.3168/jds.2022-22500
|
12 |
ROLO A P, TEODORO J S, PALMEIRA C M. Role of oxidative stress in the pathogenesis of nonalcoholic steato-hepatitis[J]. Free Radical Biology & Medicine, 2012, 52(1): 59-69. DOI: 10.1016/j.freeradbiomed.2011.10.003
doi: 10.1016/j.freeradbiomed.2011.10.003
|
13 |
GUO H L, SUN J Y, LI D Y, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation[J]. Biomedicine & Pharma-cotherapy, 2019, 112: 108704. DOI: 10.1016/j.biopha.2019.108704
doi: 10.1016/j.biopha.2019.108704
|
14 |
CHEN Z, TIAN R F, SHE Z G, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radical Biology & Medicine, 2020, 152: 116-141. DOI: 10.1016/j.freeradbiomed.2020.02.025
doi: 10.1016/j.freeradbiomed.2020.02.025
|
15 |
LEV-COHAIN N, SAPIR G, HARRIS T, et al. Real-time ALT and LDH activities determined in viable precision-cut mouse liver slices using hyperpolarized[1-13C]pyruvate—implications for studies on biopsied liver tissues[J]. NMR in Biomedicine, 2019, 32(2): e4043. DOI: 10.1002/nbm.4043
doi: 10.1002/nbm.4043
|
16 |
XU C, SUN L W, XIA C, et al. 1H-nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with fatty liver[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(2): 219-229. DOI: 10.5713/ajas.15.0439
doi: 10.5713/ajas.15.0439
|
17 |
ANDJELIĆ B, DJOKOVIĆ R, CINCOVIĆ M, et al. Rela-tionships between milk and blood biochemical parameters and metabolic status in dairy cows during lactation[J]. Metabolites, 2022, 12(8): 733. DOI: 10.3390/metabo12080733
doi: 10.3390/metabo12080733
|
18 |
SEJERSEN H, SØRENSEN M T, LARSEN T, et al. Liver protein expression in dairy cows with high liver triglycerides in early lactation[J]. Journal of Dairy Science, 2012, 95(5): 2409-2421. DOI: 10.3168/jds.2011-4604
doi: 10.3168/jds.2011-4604
|
19 |
KALAITZAKIS E, ROUBIES N, PANOUSIS N, et al. Clinicopathologic evaluation of hepatic lipidosis in peripar-turient dairy cattle[J]. Journal of Veterinary Internal Medicine, 2007, 21(4): 835-845. DOI: 10.1892/0891-6640(2007)21 [835: ceohli]2.0.co;2
doi: 10.1892/0891-6640(2007)21
|
20 |
BIONAZ M, TREVISI E, CALAMARI L, et al. Plasma paraoxonase, health, inflammatory conditions, and liver func-tion in transition dairy cows[J]. Journal of Dairy Science, 2007, 90(4): 1740-1750. DOI: 10.3168/jds.2006-445
doi: 10.3168/jds.2006-445
|
21 |
PATEL N R, SUTHAR A, PRAJAPATI A S, et al. Hemato-biochemical and ultrasonographic evaluation of hepatic lipidosis in dairy buffaloes[J]. Tropical Animal Health and Production, 2022, 54(5): 329. DOI: 10.1007/s11250-022-03322-4
doi: 10.1007/s11250-022-03322-4
|
22 |
WANG D Q H, PORTINCASA P, NEUSCHWANDER-TETRI B A. Steatosis in the liver[J]. Comprehensive Physiology, 2013, 3(4): 1493-1532. DOI: 10.1002/cphy.c130001
doi: 10.1002/cphy.c130001
|
23 |
KALAITZAKIS E, PANOUSIS N, ROUBIES N, et al. Clini-copathological evaluation of downer dairy cows with fatty liver[J]. The Canadian Veterinary Journal, 2010, 51(6): 615-622.
|
24 |
LI Y, ZOU S P, DING H Y, et al. Low expression of sirtuin 1 in the dairy cows with mild fatty liver alters hepatic lipid metabolism[J]. Animals, 2020, 10(4): 560. DOI: 10.3390/ani10040560
doi: 10.3390/ani10040560
|
25 |
HA N T, DRÖGEMÜLLER C, REIMER C, et al. Liver tran-scriptome analysis reveals important factors involved in the metabolic adaptation of the transition cow[J]. Journal of Dairy Science, 2017, 100(11): 9311-9323. DOI: 10.3168/jds.2016-12454
doi: 10.3168/jds.2016-12454
|
26 |
GAO S T, GIRMA D D, BIONAZ M, et al. Hepatic trans-criptomic adaptation from prepartum to postpartum in dairy cows[J]. Journal of Dairy Science, 2021, 104(1): 1053-1072. DOI: 10.3168/jds.2020-19101
doi: 10.3168/jds.2020-19101
|
27 |
MURONDOTI A, JORRITSMA R, BEYNEN A C, et al. Unrestricted feed intake during the dry period impairs the postpartum oxidation and synthesis of fatty acids in the liver of dairy cows[J]. Journal of Dairy Science, 2004, 87(3): 672-679. DOI: 10.3168/jds.S0022-0302(04)73210-5
doi: 10.3168/jds.S0022-0302(04)73210-5
|
28 |
梁祎凡,金海国,曹阳.羊ACOX2基因功能的研究进展[J].当代畜牧,2018(24):49-51. LIANG Y F, JIN H G, CAO Y. Advances in research on the function of ACOX2 gene in sheep[J]. Contemporary Animal Husbandry, 2018(24): 49-51. (in Chinese with English abstract)
|
29 |
DUSZKA K, GREGOR A, GUILLOU H, et al. Peroxisome proliferator-activated receptors and caloric restriction—common pathways affecting metabolism, health, and longevity[J]. Cells, 2020, 9(7): 1708. DOI: 10.3390/cells9071708
doi: 10.3390/cells9071708
|
30 |
SAWAI M, UCHIDA Y, OHNO Y, et al. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways[J]. The Journal of Biological Chemistry, 2017, 292(37): 15538-15551. DOI: 10.1074/jbc.M117.803171
doi: 10.1074/jbc.M117.803171
|
31 |
BLONDELLE J, OHNO Y, GACHE V, et al. HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth[J]. Journal of Molecular Cell Biology, 2015, 7(5): 429-440. DOI: 10.1093/jmcb/mjv049
doi: 10.1093/jmcb/mjv049
|
32 |
纪艳芹. ACAA2基因对绵羊前体脂肪细胞分化的影响及其相关育种材料创制[D].扬州:扬州大学,2017. JI Y Q. The effect of ACAA2 gene on sheep preadipocyte differentiation and the creation of related breeding materials[D]. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|