Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (4): 484-496    DOI: 10.3785/j.issn.1008-9209.2022.09.281
研究论文     
甘蓝型油菜肌醇加氧酶基因家族鉴定与表达分析
陈书冰1(),许孜书1,黄倩2,张慧3,张康妮2,段怡1,孙月娥1,周伟军2,许玲1()
1.浙江理工大学生命科学与医药学院, 浙江 杭州 310018
2.浙江大学农业与生物技术学院, 浙江 杭州 310058
3.浙江省农业技术推广中心, 浙江 杭州 310020
Identification and expression analysis of myo-inositol oxygenase gene family in Brassica napus L.
Shubing CHEN1(),XU Zishu1,Qian HUANG2,Hui ZHANG3,Kangni ZHANG2,Yi DUAN1,Yue’e SUN1,Weijun ZHOU2,Ling XU1()
1.College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.Zhejiang Agricultural Technology Extension Center, Hangzhou 310020, Zhejiang, China
 全文: PDF(12145 KB)   HTML
摘要:

肌醇加氧酶(myo-inositol oxygenase, MIOX)催化肌醇转化为葡糖醛酸,在响应生物和非生物胁迫中发挥着重要作用。本研究对甘蓝型油菜MIOX家族基因(BnMIOX)进行了全基因组鉴定和表达模式分析。结果表明,BnMIOX家族包括12个成员,分布在9条染色体上;根据MIOX基因结构域特点,可以将甘蓝型油菜与拟南芥、白菜和甘蓝构建的系统进化树分为Ⅰ、Ⅱ、Ⅲ3个亚家族;且共线性分析中没有找到串联重复基因对,全部为大片段复制基因,表明片段重复和全基因组重复是甘蓝型油菜MIOX基因家族扩增的主要驱动力。转录组数据分析表明,BnMIOX基因在不同组织、不同生长发育过程中的时空表达模式不同。不同胁迫下的表达谱分析表明,BnMIOX1基因在干旱、盐胁迫下被显著诱导表达,且BnMIOX1BnMIOX2BnMIOX9基因对干旱、盐、脱落酸(abscisic acid, ABA)和冷胁迫响应较为明显。蛋白质互作网络分析结果进一步表明,BnMIOX与GLCAK、PIS1、VTC2、VTC4、PDF2.1等蛋白存在互作,推测BnMIOX基因在提高甘蓝型油菜抗性过程中发挥关键作用。本研究为进一步探讨BnMIOX基因的功能提供了依据。

关键词: 甘蓝型油菜肌醇加氧酶基因家族非生物胁迫基因表达    
Abstract:

Myo-inositol oxygenase (MIOX) catalyzes the conversion of myo-inositol to glucuronic acid and plays an important role in response to biotic and abiotic stresses. In this study, the genome-wide identification and expression pattern analysis of the MIOX family gene in Brassica napus L.(BnMIOX) were conducted. The results showed that the BnMIOX family included 12 members distributed across nine chromosomes. According to the characteristics of MIOX gene domain, the phylogenetic tree of B. napus, Arabidopsisthaliana, B. rapa and B. oleracea could be divided into subfamilies Ⅰ, Ⅱ and Ⅲ. No tandem repeat gene pairs were found in the collinearity analysis, and all of them were large segment replication genes, demonstrating that segmental duplication and whole-genome duplication were the main driving forces for the MIOX gene family amplification in B. napus. The transcriptomic data indicated that BnMIOX genes showed different temporal and spatial expression patterns in different tissues and different growth and development processes. Expression profiles under different stresses demonstrated that the expression of BnMIOX1 gene was obviously induced under drought and salt stresses, while BnMIOX1, BnMIOX2, and BnMIOX9 genes had significant responses to drought, salt, abscisic acid (ABA), and cold stresses. The results of the protein interaction network analysis further showed that the BnMIOX interacted with proteins including GLCAK, PIS1, VTC2, VTC4, and PDF2.1, implying that BnMIOX genes play key roles in improving the resistance of B. napus. This study provides an important basis for further investigation of the function of BnMIOX genes.

Key words: Brassica napus L.    myo-inositol oxygenase (MIOX)    gene family    abiotic stress    gene expression
收稿日期: 2022-09-28 出版日期: 2023-08-29
CLC:  S565.4  
基金资助: 浙江省科技计划项目(2022C02034);浙江省农业重大技术协同推广计划项目(2021XTTGLY02);现代作物生产省部共建协同创新中心项目(CIC-MCP)
通讯作者: 许玲     E-mail: 2864928337@qq.com;lxu@zstu.edu.cn
作者简介: 陈书冰(https://orcid.org/0000-0001-6587-8322),E-mail:2864928337@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈书冰
许孜书
黄倩
张慧
张康妮
段怡
孙月娥
周伟军
许玲

引用本文:

陈书冰,许孜书,黄倩,张慧,张康妮,段怡,孙月娥,周伟军,许玲. 甘蓝型油菜肌醇加氧酶基因家族鉴定与表达分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 484-496.

Shubing CHEN,XU Zishu,Qian HUANG,Hui ZHANG,Kangni ZHANG,Yi DUAN,Yue’e SUN,Weijun ZHOU,Ling XU. Identification and expression analysis of myo-inositol oxygenase gene family in Brassica napus L.. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 484-496.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.09.281        https://www.zjujournals.com/agr/CN/Y2023/V49/I4/484

基因

Gene

基因编号

Gene ID

染色体定位

Location on

chromosome

氨基酸数目

Number of

amino acids

分子量

Molecular weight/kDa

等电点

Isoelectric point (pI)

亚细胞定位

Subcellular location

BnMIOX1BnaA01g23900DA0156163.038.02细胞核
BnMIOX2BnaA02g08540DA0231636.734.93细胞质
BnMIOX3BnaA03g47910DA0331036.335.03细胞质
BnMIOX4BnaA07g00980DA0731236.545.14细胞质
BnMIOX5BnaA09g10050DA0931736.975.05细胞质
BnMIOX6BnaC02g12100DC0231636.994.95细胞质
BnMIOX7BnaC07g01430DC0731236.555.14细胞质
BnMIOX8BnaC07g40160DC0731036.234.94细胞质
BnMIOX9BnaC08g16200DC0816819.879.06质膜
BnMIOX10BnaC09g10140DC0931737.025.15细胞质
BnMIOX11BnaC05g49660DC05_random30636.084.98细胞质
BnMIOX12BnaAnng22250DAnn_random30635.994.89细胞质
表1  BnMIOX家族的序列特征
图1  甘蓝型油菜、拟南芥、白菜和甘蓝中MIOX蛋白序列的系统发育树代表拟南芥; 代表甘蓝; 代表白菜; 代表甘蓝型油菜。
图3  BnMIOX 启动子中预测的顺式作用元件

名称

Name

序列

Sequence

数量

Number

功能

Function

ABREACGTG31脱落酸响应元件
LTRCCGAAA6低温响应元件
MBSCAACTG4干旱响应元件
P-boxCCTTTTG4赤霉素响应元件
TCA-elementCCATCTTTTT9水杨酸响应元件
TC-richGTTTTCTTAC3

参与防御和应激

反应元件

ATCT-motifAATCTAATCC2光响应元件
G-boxCACGTT21光响应元件
CGTCA-motifCGTCA23

茉莉酸甲酯响应

元件

TGACG-motifTGACG23

茉莉酸甲酯响应

元件

表2  预测的部分顺式作用元件信息
图2  BnMIOX家族的基因结构和保守基序A. BnMIOX家族的基因结构;B. BnMIOX家族的保守基序。
图4  BnMIOX 基因在染色体上的分布每条染色体以0.1 Mb为单位划分,该区域的颜色代表基因密度(蓝色:低;白色:中;红色:高)
图5  BnMIOX 家族的共线性分析灰色区域表示甘蓝型油菜基因组中所有的共线性区域,黄色线表示BnMIOX基因的复制事件。
图6  不同植物间 MIOX 基因的共线性分析灰色线表示甘蓝型油菜与其他物种所有基因的共线性,红色线表示具有共线关系的MIOX基因对。
图7  BnMIOX 基因在不同组织和器官中的表达热图FPKM:每千个碱基的转录每百万映射读取的片段。
图8  不同胁迫下 BnMIOX 基因的表达热图

BnMIOX蛋白

BnMIOX protein

BnMIOX2BnMIOX3BnMIOX4BnMIOX5BnMIOX6BnMIOX7BnMIOX8BnMIOX11
BnMIOX20.0000.5740.7360.7400.0000.7480.5740.992
BnMIOX30.0000.6130.6050.5740.6210.0000.797
BnMIOX40.0000.4740.7360.1540.6130.919
BnMIOX50.0000.7400.4850.6050.928
BnMIOX60.0000.7480.5740.992
BnMIOX70.0000.6210.917
BnMIOX80.0000.797
BnMIOX110.000
表3  BnMIOX蛋白预测结构之间的均方根偏差
图9  BnMIOX蛋白的三维结构结构模型为小鼠肌醇加氧酶与底物复合物的晶体结构。
图10  BnMIOX蛋白与其他蛋白质之间的互作网络预测圆圈代表各类蛋白质,连接线代表蛋白质-蛋白质相互作用。
4 杨楠.杨树肌醇代谢关键酶基因的表达及功能研究[D].山东,烟台:鲁东大学,2017.
YANG N. Expression and function of inositol metabolism key enzymes gene in poplar[D]. Yantai, Shandong: Ludong University, 2017. (in Chinese with English abstract)
5 LOEWUS F A, MURTHY P P N. myo-inositol metabolism in plants[J]. Plant Science, 2000, 150: 1-19.
6 YE W X, REN W B, KONG L Q, et al. Transcriptomic proling analysis of Arabidopsis thaliana treated with exogenous myo-inositol[J]. PLoS ONE, 2016, 11(9): e161949. DOI: 10.1371/journal.pone.0161949
doi: 10.1371/journal.pone.0161949
7 ARNER R J, PRABHU K S, THOMPSON J T, et al. myo-inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and D-chiro-inositol[J]. Biochemical Journal, 2001, 360: 313-320.
8 LU Y, LIU C, MIAO X, et al. Increased expression of myo-inositol oxygenase is involved in the tubulointerstitial injury of diabetic nephropathy[J]. Experimental and Clinical Endo-crinology & Diabetes, 2009, 117(6): 257-265. DOI: 10.1055/s-2008-1081212
doi: 10.1055/s-2008-1081212
9 YANG B M, HODGKINSON A, MILLWARD B A, et al. Polymorphisms of myo-inositol oxygenase gene are associated with type 1 diabetes mellitus[J]. Journal of Diabetes and its Complications, 2010, 24(6): 404-408. DOI: 10.1016/j.jdiacomp.2009.09.005
doi: 10.1016/j.jdiacomp.2009.09.005
10 XIE P, SUN L, OATES P J, et al. Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis[J]. American Journal of Physiology-Renal Physiology, 2010, 298(6): F1393-F1404. DOI: 10.1152/ajprenal.00137.2010
doi: 10.1152/ajprenal.00137.2010
11 ARNER R J, PRABHU K S, KRISHNAN V, et al. Expression of myo-inositol oxygenase in tissues susceptible todiabetic complications[J]. Biochemical and Biophysical Research Communications, 2006, 339: 816-820. DOI: 10.1016/j.bbrc.2005.11.090
doi: 10.1016/j.bbrc.2005.11.090
12 傅小娟,陈雪梅,周钦,等. Miox基因在爪蟾胚胎发育中的时间和空间表达谱分析[J].第二军医大学学报,2014,35(8):832-836. DOI:10.3724/SP.J.1008.2014.00832
FU X J, CHEN X M, ZHOU Q, et al. Analysis of temporal and spatial expression patterns of Miox genes during development of Xenopus laevis embryos[J]. Academic Journal of Second Military Medical University, 2014, 35(8): 832-836. (in Chinese with English abstract)
doi: 10.3724/SP.J.1008.2014.00832
13 DUAN J Z, ZHANG M H, ZHANG H L, et al. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)[J]. Plant Science, 2012, 196: 143-151. DOI: 10.1016/j.plantsci.2012.08.003
doi: 10.1016/j.plantsci.2012.08.003
14 CHEN C, SUN X L, DUANMU H Z, et al. Ectopic expression of a Glycine soja myo-inositol oxygenase gene (GsMIOX1a) in Arabidopsis enhances tolerance to alkaline stress[J]. PLoS ONE, 2015, 10(6): e129998. DOI: 10.1371/journal.pone.0129998
doi: 10.1371/journal.pone.0129998
1 王博.冬、春和半冬性甘蓝型油菜的遗传特征和基因组分化[D].湖北,武汉:华中农业大学,2019.
WANG B. Genetic characteristics and genomic divergence among winter, spring and semi-winter oilseed rape[D]. Wuhan, Hubei: Huazhong Agricultural University, 2019. (in Chinese with English abstract)
15 ENDRES S, TENHAKEN R. myo-inositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid[J]. Plant Physiology, 2009, 149(2): 1042-1049. DOI: 10.1104/pp.108.130948
doi: 10.1104/pp.108.130948
16 GIBON Y, USADEL B, BLAESING O E, et al. Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes[J]. Genome Biology, 2006, 7(8): R76. DOI: 10.1186/gb-2006-7-8-r76
doi: 10.1186/gb-2006-7-8-r76
17 OSUNA D, USADEL B, MORCUENDE R, et al. Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings[J]. The Plant Journal, 2007, 49: 463-491. DOI: 10.1111/j.1365-313x.2006.02979.x
doi: 10.1111/j.1365-313x.2006.02979.x
18 MUNIR S, MUMTAZ M A, AHIAKPA J K, et al. Genome-wide analysis of myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation[J]. BMC Genomics, 2020, 21: 284. DOI: 10.1186/s12864-020-6708-8
doi: 10.1186/s12864-020-6708-8
19 YANG J, YANG J L, ZHAO L L, et al. Ectopic expression of a Malus hupehensis Rehd. myo-inositol oxygenase gene (MhMIOX2) enhances tolerance to salt stress[J]. Scientia Horticulturae, 2021, 281: 109898. DOI: 10.1016/j.scienta.2021.109898
doi: 10.1016/j.scienta.2021.109898
20 SUN F M, FAN G Y, HU Q, et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype[J]. The Plant Journal, 2017, 92(3): 452-468. DOI: 10.1111/tpj.13669
doi: 10.1111/tpj.13669
21 XUE T T, WANG D, ZHANG S Z, et al. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis [J]. BMC Genomics, 2008, 9: 550. DOI: 10.1186/1471-2164-9-550
doi: 10.1186/1471-2164-9-550
22 ALI G M, KOMATSU S. Proteomic analysis of rice leaf sheath during drought stress[J]. Journal of Proteome Research, 2006, 5(2): 396-403. DOI: 10.1021/pr050291g
doi: 10.1021/pr050291g
23 SARDA X, TOUSCH D, FERRARE K, et al. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells[J]. The Plant Journal, 1997, 12(5): 1103-1111.
24 CHUNG B Y W, SIMONS C, FIRTH A E, et al. Effect of 5 ´ UTR introns on gene expression in Arabidopsis thaliana [J]. BMC Genomics, 2006, 7: 120. DOI: 10.1186/1471-2164-7-120
doi: 10.1186/1471-2164-7-120
25 JEFFARES D C, PENKETT C J, BÄHLER J. Rapidly regulated genes are intron poor[J]. Trends in Genetics, 2008, 24(8): 375-378. DOI: 10.1016/j.tig.2008.05.006
doi: 10.1016/j.tig.2008.05.006
26 吴楠,杨君,张艳,等.过表达棉花葡萄糖醛酸激酶基因GbGlcAK促进拟南芥细胞伸长[J].中国农业科技导报,2022,24(6):36-46. DOI:10.13304/j.nykjdb.2021.0806
WU N, ZHANG J, ZHANG Y, et al. Overexpression of a cotton glucuronokinase gene GbGlcAK promotes cell elongation in Arabidopsis thaliana [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 36-46. (in Chinese with English abstract)
doi: 10.13304/j.nykjdb.2021.0806
27 彭丽娟,彭正松,杨在君,等.小麦三雌蕊基因Pis1的多效性研究初报[J].西华师范大学学报(自然科学版),2011,32(1):12-15. DOI:10.16246/j.issn.1673-5072.2011.01.002
PENG L J, PENG Z S, YANG Z J, et al. Preliminary study on heritable pleiotropy of three pistils gene Pis1 in wheat[J]. Journal of China West Normal University (Natural Sciences), 2011, 32(1): 12-15. (in Chinese with English abstract)
doi: 10.16246/j.issn.1673-5072.2011.01.002
28 董祥雨,陈丽华,涂泽行,等.棉花GhVTC2基因促进烟草BY2悬浮细胞和拟南芥主根伸长[J].生物学杂志,2022,39(5):32-37. DOI:10.3969/j.issn.2095-1736.2022.05.032
DONG X Y, CHEN L H, TU Z X, et al. GhVTC2 gene promotes elongation of tobacco BY2 suspension cells and Arabidopsis main roots[J]. Journal of Biology, 2022, 39(5): 32-37. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-1736.2022.05.032
29 BOYCE K J, KRETSCHMER M, KRONSTAD J W. The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis [J]. Eukaryotic Cell, 2006, 5(8): 1399-1409. DOI: 10.1128/EC.00131-06
doi: 10.1128/EC.00131-06
30 张曼,羊杏平,王薇薇,等.西瓜防御素基因ClPDF2.1的克隆及表达分析[J].西北植物学报,2013,33(5):872-877. DOI:10.3969/j.issn.1000-4025.2013.05.003
ZHANG M, YANG X P, WANG W W, et al. Cloning and expression analysis of plant defensin-like gene (ClPDF2.1) from watermelon[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(5): 872-877. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-4025.2013.05.003
31 CRAMER G R, URANO K, DELROT S, et al. Effects of abiotic stress on plants: a systems biology perspective[J]. BMC Plant Biology, 2011, 11: 163. DOI: 10.1186/1471-2229-11-163
doi: 10.1186/1471-2229-11-163
32 YANG Y J, MA C, XU Y J, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J]. The Plant Cell, 2014, 26(5): 2038-2354. DOI: 10.1105/tpc.114.124867
doi: 10.1105/tpc.114.124867
33 LIU S M, KANDOTH P K, WARREN S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428): 256-260. DOI: 10.1038/nature11651
doi: 10.1038/nature11651
34 MITCHUM M G. Soy bean resistance to the soybean cyst nematode Heterodera glycines: an update[J]. Phytopathology, 2016, 106(12): 1444-1450. DOI: 10.1094/PHYTO-06-16-0227-RVW
doi: 10.1094/PHYTO-06-16-0227-RVW
35 王学敏,杨若巍,王超,等.大豆肌醇加氧酶基因响应线虫胁迫的表达分析[J].中国油料作物学报,2017,39(6):778-784. DOI:10.7505 /j.issn.1007-9084.2017.06.008
WANG X M, YANG R W, WANG C, et al. Expression analysis of GmMIOX gene response to SCN stress[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(6): 778-784. (in Chinese with English abstract)
doi: 10.7505 /j.issn.1007-9084.2017.06.008
2 CHALHOUB B, DENOEUD F, LIU S Y, et al. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome[J]. Science, 2014, 345(6199): 950-953. DOI: 10.1126/science.1253435
doi: 10.1126/science.1253435
3 张梦,谢益民,杨海涛,等.肌醇在植物体内的代谢概述:肌醇作为细胞壁木聚糖和果胶前驱物的代谢途径[J].林产化学与工业,2013,33(5):106-114. DOI:10.3969/j.issn.0253-2417.2013.05.021
ZHANG M, XIE Y M, YANG H T, et al. Myo-inositol metamolism as the precursor of xylan and pectin in plants[J]. Chemistry and Industry of Forest Products, 2013, 33(5): 106-114. (in Chinese with English abstract)
doi: 10.3969/j.issn.0253-2417.2013.05.021
[1] 蔡溧聪,唐明佳,徐进,齐振宇,范飞军,周艳虹. 茭白热激转录因子基因的鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 269-279.
[2] 吕雪祺, 许颖, 黄莹莹, 刘明启, 翁晓燕. 转录因子OsbHLH59通过调控木聚糖酶抑制蛋白OsXIP表达水平影响水稻抗褐飞虱的机制研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 453-464.
[3] 朱乐,赵鑫泽,蒋立希. 甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 303-313.
[4] 王尤轩,王梦雨,李煜博,陶晗,夏楚楚,黄凯美,汪俏梅. 芥蓝Aux/IAA家族基因生物信息学与表达分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 314-324.
[5] 张彤,汪一萍,葛洋,NTIRI Eric,周文武. 结球甘蓝α-法呢烯合成酶基因的鉴定与功能分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 182-192.
[6] 顾天天,田勇,周玮,刘国发,陈黎,曾涛,吴信生,徐琪,陈国宏,卢立志. 上笼应激对绍兴鸭十二指肠组织结构、抗氧化能力及基因mRNA表达量的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 234-242.
[7] 易治鑫,蒋易龙,王秋宏,徐麒麟,王新兴,莫桂林,姜冬梅,康波. 精胺对鹅免疫器官指数及免疫相关因子基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 596-602.
[8] 梅磊, 朱晔, 肖钦之, 陈进红, 祝水金. 植物络合素合酶及其基因研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 530-538.
[9] BEGUM Mahfuj Ara, 史肖肖, 白月亮, 蒋艳冬, 周文武, 毛存贵, 祝增荣. 水稻丝氨酸棕榈酰转移酶的分子克隆、特征及其与褐飞虱抗性相关的基因表达(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 365-372.
[10] 倪西源,黄吉祥,柳寒,潘兵,赵坚义. 应用分子标记辅助选育甘蓝型油菜杂交种的可行性[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 173-182.
[11] 龙诗韵,姜冬梅,陈咨余,管成,易治鑫,康波. 外源性亚精胺对鼠卵巢生殖激素受体基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 247-252.
[12] 岳武成,陈娇,慈元吉,黄姝,王军,王成辉. 断肢再生对中华绒螯蟹蜕壳、生长及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 502-508.
[13] 郑嫩珠, 李丽, 辛清武, 缪中纬, 朱志明, 刘凤辉, 吴俭飞, 卢立志. 内参基因对TYR、MITF和ASIP基因在白绒乌骨鸡各组织表达水平的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 732-740.
[14] 孔青, 迟晨, 单世华, 李琦玉. 花生中巨大芽孢杆菌对黄曲霉毒素合成相关基因的抑制[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 567-576.
[15] 王燕,潘长田,王洁,秦力,邹滔,卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 449-457.