Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (4): 453-464    DOI: 10.3785/j.issn.1008-9209.2021.07.072
植物保护     
转录因子OsbHLH59通过调控木聚糖酶抑制蛋白OsXIP表达水平影响水稻抗褐飞虱的机制研究(英文)
吕雪祺,许颖,黄莹莹,刘明启,翁晓燕
1.浙江大学生命科学学院植物生物学研究所,杭州 310058
2.中国计量大学生命科学学院,杭州 310018
OsbHLH59 involved in rice resistance to Nilaparvata lugens(St?l) by regulating the expression level of xylanase inhibitor protein OsXIP
Xueqi Lü1(),Ying XU1,Yingying HUANG1,Mingqi LIU2,Xiaoyan WENG1()
1.Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
2.College of Life Sciences, China Jiliang University, Hangzhou 310018, China
 全文: PDF(2583 KB)   HTML
摘要:

木聚糖酶抑制蛋白(xylanase inhibitor protein, XIP)在植物防御中发挥作用,实验室前期研究发现,水稻木聚糖酶抑制蛋白OsXIP能响应褐飞虱[Nilaparvata lugens (St?l)]胁迫。转录因子OsbHLH59可以与OsXIP的启动子结合以响应褐飞虱侵害。本研究利用转基因技术获得OsbHLH59过表达水稻株系并利用CRISPR/Cas9系统获得了OsbHLH59突变水稻株系,研究了转录因子OsbHLH59对OsXIP表达水平的影响及其在水稻抗褐飞虱中的作用。结果表明,OsbHLH59的过表达引起了OsXIP表达水平的上调。褐飞虱侵害对OsbHLH59过表达株系和OsXIP基因表达水平高的株系的生长水平影响相较野生型更小。与野生型相比,过表达OsbHLH59OsXIP基因均降低了褐飞虱的取食偏好。同时,OsbHLH59过表达株系和OsXIP过表达株系的防御相关基因表达水平更高,H2O2含量更低,保护性酶活性也更高。综上所述,OsbHLH59可以提高OsXIP的表达,OsXIP在水稻响应褐飞虱胁迫中发挥了重要作用。

关键词: 木聚糖酶抑制蛋白OsXIPOsbHLH59基因表达植物防御    
Abstract:

Xylanase inhibitor protein (XIP) is considered to participate in plant defense. OsXIP was found to be a stress-responsive gene of Nilaparvata lugens (St?l) in the previous study. The transcription factor OsbHLH59 could be combined with the promoter of OsXIP in response to brown planthopper (BPH) treatment. In order to study whether OsbHLH59 was involved in regulating the expression of OsXIP and mediating rice resistance to BPH, OsbHLH59 overexpression transgenic lines were obtained by transgenic methods, and OsbHLH59 mutant lineswere obtained by using CRISPR/Cas9 system. The results showed that the expression levels of xylanase inhibitor OsXIP enhanced accompanied with the increased overexpression level of transcription factor gene OsbHLH59. Through the determination of agronomic traits, it was found that the growth of OsbHLH59 overexpression lines and OsXIP overexpression lines was less affected by the BPH treatment compared with wild type (WT). When WT plants and transgenic plants were exposed to BPH, the feeding preference of BPH in OsbHLH59 overexpression and OsXIP overexpression lines reduced compared with that of WT. With the BPH treatment, higher expression levels of defense-related genes were found in OsbHLH59 overexpression and OsXIP overexpression lines. In addition, compared with WT, OsbHLH59 overexpression and OsXIP overexpression lines had stronger abilities to remove excess H2O2 and higher antioxidant enzyme activities. This study reveals that OsbHLH59 can activate the expression of OsXIP, and OsXIP participates in rice resistance to BPH.

Key words: xylanase inhibitor protein    OsXIP    OsbHLH59    gene expression    plant defence
出版日期: 2022-08-25
CLC:  Q 943.2  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吕雪祺
许颖
黄莹莹
刘明启
翁晓燕

引用本文:

吕雪祺, 许颖, 黄莹莹, 刘明启, 翁晓燕. 转录因子OsbHLH59通过调控木聚糖酶抑制蛋白OsXIP表达水平影响水稻抗褐飞虱的机制研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 453-464.

Xueqi Lü, Ying XU, Yingying HUANG, Mingqi LIU, Xiaoyan WENG. OsbHLH59 involved in rice resistance to Nilaparvata lugens(St?l) by regulating the expression level of xylanase inhibitor protein OsXIP. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 453-464.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.07.072        https://www.zjujournals.com/agr/CN/Y2022/V48/I4/453

Primer nameSequence (5′→3′)
OsbHLH59-gR1

F: TAGGTCTCCGCTGCCCTGCGAgttttagagctagaa

R: ATGGTCTCACAGCGTCGGCACtgcaccagccgggaa

OsbHLH59-gR2

F: TAGGTCTCCCAATCTGTTTTAgttttagagctagaa

R: ATGGTCTCAATTGGTCAAGGCtgcaccagccgggaa

OsbHLH59-gR3

F: TAGGTCTCCAGAAAATTCGGAgttttagagctagaa

R: ATGGTCTCATTCTCACGGCAAtgcaccagccgggaa

OsbHLH59-gR4

F: TAGGTCTCCAGCAAGCTAAGTgttttagagctagaa

R: CGGGTCTCATGCTTGTCAGGAtgcaccagccggg

OsbHLH59-gR5

F: TAGGTCTCCCAGCTCGTCTGTgttttagagctagaa

R: CGGGTCTCAGCTGCATCACTCtgcaccagccggg

OsbHLH59-gR6

F: TAGGTCTCCGAGAAACAATCAgttttagagctagaa

R: CGGGTCTCATCTCGTAGCTTCtgcaccagccggg

  
Gene nameSequence (5′→3′)
Actin-1

F: TTATGGTTGGGATGGGACA

R: AGCACGGCTTGAATAGCG

Actin-2

F: TCAGCAACTGGGATGATATGGAG

R: GCCGTTGTGGTGAATGAGTAAC

OsXIP

F: CAACAAGGACTACCGCGCCAC

R: AAACCATGACGCCTCCGAAGT

OsbHLH59

F: GCAGAGAAGGAGAGGCTGGA

R: ACCACTGCCACATTGCCATC

OsPR1

F: CAAAACTCGGCGCAGGAC

R: GCGGAGCCCCAGAAGATG

OsPR1b

F: ACTCCCCTCCCAAGCTCA

R: CTCTTCTCGCCCACCCAC

OsNH1

F: GTCGCCGAGCTCACCAAC

R: AGGCTTAGGCGTGCATCA

OsAOS2

F: GACGCCAAGAGCTTCCCC

R: GAGCTGCGACTCGACGGT

  
  
LineTillering stageHeading stageFilling stage
WT20.7±1.26a22.1±1.67a19.6±1.13a
OsXIP-119.6±0.58a22.0±1.47a19.0±1.71a
o-59-120.9±0.83a22.5±1.02a18.9±0.62a
c-59-120.6±0.86a23.2±0.98a19.2±0.86a
  
  
  
  
  
  
1 DEBYSER W, DERDELINCKX G, DELCOUR J A. Arabinoxylan and arabinoxylan hydrolysing activities in barley malts and worts derived from them[J]. Journal of Cereal Science, 1997, 26(1): 67-74. DOI:10.1006/jcrs.1996.0107
doi: 10.1006/jcrs.1996.0107
2 DORNEZ E, CROES E, GEBRUERS K, et al. Accumulated evidence substantiates a role for three classes of wheat xylanase inhibitors in plant defense[J]. Critical Reviews in Plant Sciences, 2010, 29(4): 244-264. DOI:10.1080/07352689.2010.487780
doi: 10.1080/07352689.2010.487780
3 GEBRUERS K, BRIJS K, COURTIN C M, et al. Properties of TAXI-type endoxylanase inhibitors[J]. Biochimica et Biophysica Acta—Proteins and Proteomics, 2004, 1696(2): 213-221. DOI:10.1016/j.bbapap.2003.08.013
doi: 10.1016/j.bbapap.2003.08.013
4 JUGE N. Plant protein inhibitors of cell wall degrading enzymes[J]. Trends in Plant Science, 2006, 11(7): 359-367. DOI:10.1016/j.tplants.2006.05.006
doi: 10.1016/j.tplants.2006.05.006
5 BEAUGRAND J, GEBRUERS K, VERVERKEN C, et al. Antibodies against wheat xylanase inhibitors as tools for the id treatment and differential expression of XIP-family genes in rice[J]. Plant and Cell Physiology, 2007, 48(5): 700-714. DOI:10.1093/pcp/pcm038
doi: 10.1093/pcp/pcm038
9 ZHAN Y H, SUN X Y, RONG G Z, et al. Identification of two transcription factors activating the expression of OsXIP in rice defence response[J]. BMC Biotechnology, 2017, 17(1): 26. DOI:10.1186/s12896-017-0344-7
doi: 10.1186/s12896-017-0344-7
10 DU J H, ZHAI L H, GUO D L. Progress in bHLH transcription factors regulating the response to iron deficiency in plants[J]. Chinese Journal of Biotechnology, 2019, 35(5): 766-774. DOI:10.13345/j.cjb.180407
doi: 10.13345/j.cjb.180407
11 YANG T R, YAO S F, HAO L, et al. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway[J]. Plant Cell Reports, 2016, 35(11): 2309-2323. DOI:10.1007/s00299-016-2036-5
doi: 10.1007/s00299-016-2036-5
12 LI X H, YANG R, CHEN H M. The Arabidopsis thaliana mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA[J]. PLoS ONE, 2018, 13(3): e193458. DOI:10.1371/journal.‍pone.0193458
doi: 10.1371/journal.?pone.0193458
13 WANG M L, YANG D Y, MA F L, et al. OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes[J]. Rice, 2019, 12(1): 9. DOI:10.1186/s12284-019-0267-0
doi: 10.1186/s12284-019-0267-0
14 YOSHIDA S, FORNO D A, COCK J H, et al. Laboratory Manual for Physiological Studies of Rice[M]. Laguna, Philippines: International Rice Research Institute, 1971.
15 WENG X Y, HUANG Y Y, HOU C X, et al. Effects of an exogenous xylanase gene expression on the growth of transgenic rice and the expression level of endogenous xylanase inhibitor gene RIXI [J]. Journal of the Science of Food and Agriculture, 2012, 93(1): 173-179. DOI:10.1002/jsfa.5746
doi: 10.1002/jsfa.5746
16 XIE K B, MINKENBERG B, YANG Y N. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. PNAS, 2015, 112(11): 3570-3575. DOI:10.1073/pnas.1420294112
doi: 10.1073/pnas.1420294112
17 THOMAS M R, MATSUMOTO S, CAIN P, et al. Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification[J]. Theoretical and Applied Genetics, 1993, 86(2/3): 173-180. DOI:10.1007/BF00222076
doi: 10.1007/BF00222076
18 封洁琼,刘清,潘依,等. OsmiR156过表达对水稻分蘖数与生长生理相关性的影响[J].安徽农业科学,2014,42(11):3172-3174. DOI:10.13989/j.cnki.0517-6611.2014.11.053
FENG J Q, LIU Q, PAN Y, et al. Effects of OsmiR156 overexpression on the relationship between tiller number and growth physiology of Oryza sativa L.[J]. Journal of Anhui Agricultural Sciences, 2014, 42(11): 3172-3174. (in Chinese with English abstract). DOI:10.13989/j.cnki.0517-6611.2014.11.053
doi: 10.13989/j.cnki.0517-6611.2014.11.053
19 HE J, LIU Y Q, YUAN D Y, et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonialyase pathway in rice[J]. PNAS, 2020, 117(1): 271-277. DOI:10.1073/pnas.1902771116
doi: 10.1073/pnas.1902771116
20 LU J, JU H P, ZHOU G X, et al. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice[J]. The Plant Journal, 2011, 68(4): 583-596. DOI:10.1111/j.1365-313X.2011.04709.x
doi: 10.1111/j.1365-313X.2011.04709.x
21 JANA S, CHOUDHURI M A. Glycolate metabolism of three submerged aquatic angiosperms during aging[J]. Aquatic Botany, 1981, 12: 345-354. DOI:10.1016/0304-3770(82)90026-2
doi: 10.1016/0304-3770(82)90026-2
22 KATO M, SHIMIZU S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation[J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 1987, 65(4): 729-735. DOI:10.1139/b87-097
doi: 10.1139/b87-097
23 KOCHBA J, LAVEE S, SPIEGEL-ROY P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic 'Shamouti’ orange ovular callus lines[J]. Plant and Cell Physiology, 1977, 18: 463-467. DOI:10.1093/oxfordjournals.pcp.a075455
doi: 10.1093/oxfordjournals.pcp.a075455
24 SORENSEN A M, KRÖBER S, UNTE U S, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. The Plant Journal, 2003, 33(2): 413-423. DOI:10.1046/j.1365-313x.2003.01644.x
doi: 10.1046/j.1365-313x.2003.01644.x
25 MARTÍNEZ-GARCÍA J F, HUQ E, QUAIL P H. Direct targeting of light signals to a promoter element-bound transcription factor[J]. Science, 2000, 288(5467): 859-863. DOI:10.1126/science.288.5467.859
doi: 10.1126/science.288.5467.859
26 OGO Y, ITAI R N, NAKANISHI H, et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions[J]. The Plant Journal, 2007, 51(3): 366-377. DOI:10.1111/j.1365-313X.2007.03149.x
doi: 10.1111/j.1365-313X.2007.03149.x
27 XU W R, ZHANG N B, JIAO Y T, et al. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis [J]. Molecular Biology Reports, 2014, 41(8): 5329-5342. DOI:10.1007/s11033-014-3404-2
doi: 10.1007/s11033-014-3404-2
28 ČERNÝ M, HABÁNOVÁ H, BERKA M, et al. Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks[J]. International Journal of Molecular Sciences, 2018, 19(9): 2812. DOI:10.3390/ijms19092812
doi: 10.3390/ijms19092812
29 SMIRNOFF N, ARNAUD D. Hydrogen peroxide metabolism and functions in plants[J]. New Phytologist, 2019, 221(3): 1197-1214. DOI:10.1111/nph.15488
doi: 10.1111/nph.15488
30 VAN LOON L C, REP M, PIETERSE C M J. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology, 2006, 44: 135-162. DOI:10.1146/annurev.phyto.44.070505.143425
doi: 10.1146/annurev.phyto.44.070505.143425
31 REYMOND P, FARMER E E. Jasmonate and salicylate as global signals for defense gene expression[J]. Current Opinion in Plant Biology, 1998, 1(5): 404-411. DOI:10.1016/S1369-5266(98)80264-1
doi: 10.1016/S1369-5266(98)80264-1
[1] 张彤,汪一萍,葛洋,NTIRI Eric,周文武. 结球甘蓝α-法呢烯合成酶基因的鉴定与功能分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 182-192.
[2] 顾天天,田勇,周玮,刘国发,陈黎,曾涛,吴信生,徐琪,陈国宏,卢立志. 上笼应激对绍兴鸭十二指肠组织结构、抗氧化能力及基因mRNA表达量的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 234-242.
[3] 易治鑫,蒋易龙,王秋宏,徐麒麟,王新兴,莫桂林,姜冬梅,康波. 精胺对鹅免疫器官指数及免疫相关因子基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 596-602.
[4] 梅磊, 朱晔, 肖钦之, 陈进红, 祝水金. 植物络合素合酶及其基因研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 530-538.
[5] BEGUM Mahfuj Ara, 史肖肖, 白月亮, 蒋艳冬, 周文武, 毛存贵, 祝增荣. 水稻丝氨酸棕榈酰转移酶的分子克隆、特征及其与褐飞虱抗性相关的基因表达(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 365-372.
[6] 龙诗韵,姜冬梅,陈咨余,管成,易治鑫,康波. 外源性亚精胺对鼠卵巢生殖激素受体基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 247-252.
[7] 彭耀耀,侯春晓,詹仪花,黄莹莹,孙翔宇,翁晓燕. RIXI过量表达转基因水稻的全基因组表达谱分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 643-653.
[8] 岳武成,陈娇,慈元吉,黄姝,王军,王成辉. 断肢再生对中华绒螯蟹蜕壳、生长及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 502-508.
[9] 郑嫩珠, 李丽, 辛清武, 缪中纬, 朱志明, 刘凤辉, 吴俭飞, 卢立志. 内参基因对TYR、MITF和ASIP基因在白绒乌骨鸡各组织表达水平的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 732-740.
[10] 孔青, 迟晨, 单世华, 李琦玉. 花生中巨大芽孢杆菌对黄曲霉毒素合成相关基因的抑制[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 567-576.
[11] 王燕,潘长田,王洁,秦力,邹滔,卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 449-457.
[12] 蒋明,陈贝贝,管铭,李金枝,黄笑梅,顾云吉. 青花菜转录因子基因BoWRKY2的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 153-159.
[13] 孔福苓;王洁;程琳;关小燕;何艳军;卢钢. 番茄SlMAPK12基因的分离及表达特征分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 551-558.
[14] 张永亮, 盛东峰, 朱勇. 野桑蚕酚氧化酶原基因PPO1的克隆及其特征(英文)[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 256-262.
[15] 王莎莎, 孙利利, 肖素勤, 周磊, 孙振, 陈丽梅. 叶片喷施C1 化合物对拟南芥生理特性和C1 代谢、光合作用及胁迫相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 631-641.