Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (2): 182-192    DOI: 10.3785/j.issn.1008-9209.2020.07.211
植物保护     
结球甘蓝α-法呢烯合成酶基因的鉴定与功能分析
张彤1(),汪一萍2,葛洋2,NTIRI Eric2,周文武1,2()
1.福建农林大学应用生态研究所,闽台作物有害生物生态防控国家重点实验室,福州 350002
2.浙江大学昆虫科学研究所,农业农村部作物病虫分子生物学重点实验室,杭州 310058
Identification and functional analysis of α-farnesene synthase gene from the cabbage Brassica oleracea
Tong ZHANG1(),Yiping WANG2,Yang GE2,Eric NTIRI2,Wenwu ZHOU1,2()
1.State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2.Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2926 KB)   HTML
摘要:

为阐明结球甘蓝α-法呢烯合成酶基因(BoTPSa)的生物学功能,本研究克隆了BoTPSa基因并分析了其在不同环境胁迫影响下的表达情况。利用大肠埃希菌原核表达系统,异源表达其蛋白和测定其生化功能,并在拟南芥中对BoTPSa的亚细胞定位进行了研究。结果表明:BoTPSa基因与十字花科特别是芸薹属植物的同源基因在碱基序列上高度相似,说明其具有较保守的结构;小菜蛾危害、蚜虫危害、高温胁迫、低温胁迫均能显著诱导BoTPSa基因的表达,并且受小菜蛾虫害诱导的基因表达变化幅度高于其他胁迫处理,说明在结球甘蓝体内BoTPSa可能参与虫害和非生物胁迫反应;BoTPSa蛋白未定位于叶绿体和细胞核中,在体外能催化合成多种萜类产物,是一个多功能酶。综上所述,本研究系统解析了结球甘蓝的α-法呢烯合成酶的功能,为十字花科作物的萜类合酶的功能研究和实践应用提供了理论基础。

关键词: 结球甘蓝α-法呢烯合成酶原核表达基因表达亚细胞定位    
Abstract:

In order to illuminate the biological function of α-farnesene synthase gene (BoTPSa) from the cabbage Brassica oleracea, the BoTPSa gene was cloned and its expression levels were measured in the plants treated by different environmental stresses. Then the protein was heterologously expressed in Escherichia coli prokaryotic expression system and its biochemical function was determined, and the subcellular localization of this protein was studied in Arabidopsis thaliana. The results showed that BoTPSa gene and its homologous genes from cruciferous plants (especially from Brassica) were quite similar in the nucleic acid sequence level, indicating that this gene had conserved structures. The stresses including the damages caused by diamond back moth (DBM), aphids, the high and low temperatures could significantly affect the expression levels of BoTPSa, and DBM damage caused the highest change of gene expression level among all the tested stresses, indicating that this gene was involved in the insect herbivore and abiotic stresses responses in cabbage. The BoTPSa protein was not localized in chloroplasts or cell nucleus, and could catalyze the formation of several terpenoids in vitro, which was a multifunctional enzyme. Above all, this study systemically characterizes the α-farnesene synthase gene (BoTPSa) from the cabbage, which could provide a basis for the functional and applied studies of terpene synthase in cruciferous plants.

Key words: Brassica oleracea    α-farnesene synthase    prokaryotic expression    gene expression    subcellular localization
收稿日期: 2020-07-21 出版日期: 2021-04-25
CLC:  Q 78  
基金资助: 国家自然科学基金(31701798);浙江省重点研发计划(2018C04G2011264)
通讯作者: 周文武     E-mail: ztnb2020@163.com;wenwuzhou@zju.edu.cn
作者简介: 张彤(https://orcid.org/0000-0003-4931-6308),E-mail:ztnb2020@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张彤
汪一萍
葛洋
NTIRI Eric
周文武

引用本文:

张彤,汪一萍,葛洋,NTIRI Eric,周文武. 结球甘蓝α-法呢烯合成酶基因的鉴定与功能分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 182-192.

Tong ZHANG,Yiping WANG,Yang GE,Eric NTIRI,Wenwu ZHOU. Identification and functional analysis of α-farnesene synthase gene from the cabbage Brassica oleracea. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 182-192.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.07.211        http://www.zjujournals.com/agr/CN/Y2021/V47/I2/182

图1  BoTPSa蛋白的结构域和三级结构A. BoTPSa蛋白的结构域;B. BoTPSa蛋白的三级结构。
图2  16种植物中TPS基因的系统进化树
图3  小菜蛾诱导结球甘蓝叶、茎、根BoTPSa基因的相对表达量A. 叶;B. 茎;C. 根。CK:未受小菜蛾危害的结球甘蓝组。***表示在同一处理时间不同处理间在P<0.001水平差异有极高度统计学意义。
图4  外界因素诱导结球甘蓝叶中BoTPSa基因的相对表达量CK:未受小菜蛾危害的结球甘蓝组。*表示与对照组相比在 P<0.05水平差异有统计学意义。
  
图6  重组BoTPSa酶催化产物的GC-MS分析A. FPP纯品的全扫描质谱图;B. 98%法呢烯混合烯烃(稀释1×104倍)的全扫描质谱图;C. 以FPP为底物的BoTPSa酶活产物的全扫描质谱图。a:草烯;b:β-法呢烯;c:α-法呢烯。
图7  BoTPSa在拟南芥原生质体中的亚细胞定位A. BoTPSa荧光与细胞核标志物荧光的位置;B. GFP与叶绿体自发荧光的位置。图a~d为含目的基因的亚细胞定位载体在不同视野下的定位结果,图e~h为不含目的基因的亚细胞定位载体在不同视野下的定位结果。图中的蓝点为细胞核标志物基因表达蛋白的荧光,红点为叶绿体的自发荧光,绿点为GFP表达产物的荧光。
1 林克剑,吴孔明,张永军,等.利用诱集寄主苘麻防治B型烟粉虱的研究.中国农业科学,2006,39(7):1379-1386.
LIN K J, WU K M, ZHANG Y J, et al. Evaluation of piemarker Abutilon theophrasti Medic as a trap plant in the integrated management of Bemisia tabaci (biotype B) in cotton and soybean crops. Scientia Agricultura Sinica, 2006,39(7):1379-1386. (in Chinese with English abstract)
2 GUERRIERI E. Who’s listening to talking plants?//BLANDE J D, GLINWOOD R. Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Cham, Switzerland: Springer, 2016. DOI:10.1007/978-3-319-33498-1_5
doi: 10.1007/978-3-319-33498-1_5
3 DICKE M, LORETO F. Induced plant volatiles: from genes to climate change. Trends in Plant Science, 2010,15(3):115-117. DOI:10.1016/j.tplants.2010.01.007
doi: 10.1016/j.tplants.2010.01.007
4 ?IMPRAGA M, GHIMIRE R P, STRAETEN D VAN DER, et al. Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. European Journal of Forest Research, 2019,138:763-787. DOI:10.1007/s10342-019-01213-2
doi: 10.1007/s10342-019-01213-2
5 KALSKE A, SHIOJIRI K, UESUGI A, et al. Insect herbivory selects for volatile-mediated plant-plant communication. Current Biology, 2019,29(18):3128. DOI:10.1016/j.cub.2019.08.011
doi: 10.1016/j.cub.2019.08.011
6 ZHANG P J, SHU J P, FU C X, et al. Trade-offs between constitutive and induced resistance in wild crucifers shown by a natural, but not an artificial, elicitor. Oecologia, 2008,157(1):83-92. DOI:10.1007/s00442-008-1060-8
doi: 10.1007/s00442-008-1060-8
7 ZHUANG X F, K?LLNER T G, ZHAO N, et al. Dynamic evolution of herbivore‐induced sesquiterpene biosynthesis in sorghum and related grass crops. The Plant Journal, 2011,69(1):70-80. DOI:10.1111/j.1365-313X.2011.04771.x
doi: 10.1111/j.1365-313X.2011.04771.x
8 LI T, BLANDE J D, HOLOPAINEN J K. Atmospheric transformation of plant volatiles disrupt host plant finding. Scientific Reports, 2016,6:33851. DOI:10.1038/srep33851
doi: 10.1038/srep33851
9 HATANO E, SAVEER A M, BORRERO-ECHEVERRY F, et al. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biology, 2015,13:75. DOI:10.1186/s12915-015-0188-3
doi: 10.1186/s12915-015-0188-3
10 钟永志,谢明惠,林璐璐,等.草地贪夜蛾对氧化芳樟醇的趋性.植物保护,2020,46(4):178-180. DOI:10.16688/j.zwbh.2020065
ZHONG Y Z, XIE M H, LIN L L, et al. Orientational response of Spodoptera frugiperda (J. E. Smith) to linalool oxide. Plant Protection, 2020,46(4):178-180. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2020065
11 余航.大花六道木对稻虱缨小蜂的引诱作用.杭州:浙江大学,2016:42-45.
YU H. Attraction of Abelia grandiflora to Anagrus nilaparvatae (Hymenoptera: Mymaridae), an important egg parasitoid of rice planthoppers. Hangzhou: Zhejiang University, 2016:42-45. (in Chinese with English abstract)
12 HU L F, YE M, ERB M. Integration of two herbivore induced plant volatiles results in synergistic effects on plant defence and resistance. Plant, Cell & Environment, 2019,42(3):959-971. DOI:10.1111/pce.13443
doi: 10.1111/pce.13443
13 CHEN F, THOLL D, BOHLMANN J, et al. The family of terpene synthases in plants: a mid size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 2011,66(1):212-229. DOI:10.1111/j.1365-313X.2011.04520.x
doi: 10.1111/j.1365-313X.2011.04520.x
14 CHEN F, RO D K, PETRI J, et al. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1, 8-cineole. Plant Physiology, 2004,135(4):1956-1966. DOI:10.1104/pp.104.044388
doi: 10.1104/pp.104.044388
15 XIAO Y, WANG Q, ERB M, et al. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecology Letters, 2012,15:1130-1139. DOI:10.1111/j.1461-0248.2012.01835.x
doi: 10.1111/j.1461-0248.2012.01835.x
16 WANG Q, XIN Z J, LI J C, et al. (E)-β-caryophyllene functions as a host location signal for the rice white-backed planthopper Sogatella furcifera. Physiological and Molecular Plant Pathology, 2015,91:106-112. DOI:10.1016/j.pmpp.2015.07.002
doi: 10.1016/j.pmpp.2015.07.002
17 LIN J Y, WANG D, CHEN X L, et al. An (E, E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles. Plant Biotechnology Journal, 2016,15(4):510-519. DOI: 10.1111/pbi.12649
doi: 10.1111/pbi.12649
18 LIU S Y, LIU Y M, YANG X H, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014,5:3930. DOI:10.1038/ncomms4930
doi: 10.1038/ncomms4930
19 冯夏,李振宇,吴青君,等.小菜蛾系统调查及抗药性监测方法.应用昆虫学报,2014,51(4):1120-1124. DOI:10.7679/j.issn.2095-1353.2014.133
FENG X, LI Z Y, WU Q J, et al. Techniques for surveying diamondback moth (Plutella xylostella) populations and monitoring their resistance to pesticides. Chinese Journal of Applied Entomology, 2014,51(4):1120-1124. (in Chinese with English abstract)
doi: 10.7679/j.issn.2095-1353.2014.133
20 黄宇萍.小菜蛾诱导的甘蓝挥发性物质及其效应.福州:福建农林大学,2012:18-44.
HUANG Y P. Volatiles from Brassica oleracea infested by Plutella xylostella (L.) and their effects. Fuzhou: Fujian Agriculture and Forestry University, 2012:18-44. (in Chinese with English abstract)
21 DOROTHEA T. Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering Biotechnology, 2015,148:63-106. DOI:10.1007/10_2014_295
doi: 10.1007/10_2014_295
22 胡智慧,翁彦如,谌柄旭,等.萜类合成酶定向进化的新思路.微生物学报,2019,59(4):591-600. DOI:10.13343/j.cnki.wsxb.20180216
HU Z H, WENG Y R, CHEN B X, et al. Innovations for directed evolution of terpenoid synthases. Acta Microbiologica Sinica, 2019,59(4):591-600. (in Chinese with English abstract)
doi: 10.13343/j.cnki.wsxb.20180216
23 陈香.毛竹萜类合成酶基因TPSs的克隆、表达与功能研究.北京:中国林业科学研究院,2015:24-45.
CHEN X. Cloning, expression and functional analysis of moso bamboo terpene synthase genes (TPSs). Beijing: Chinese Academy of Forestry, 2015:24-45. (in Chinese with English abstract)
24 WONG J, LEONARDO R S, JAY D K. Microbial production of isoprenoids // LEE S Y. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Daejeon, Korea: Springer, 2017:359-382. DOI:10.1007/978-3-319-50436-0_219
doi: 10.1007/978-3-319-50436-0_219
25 徐娅莹.佛手萜类芳香物质的器官差异与合成相关基因鉴别.杭州:浙江大学,2019:43-77.
XU Y Y. Spatial and temporal distribution of volatile terpenoids and identification of formation related genes in finger citron. Hangzhou: Zhejiang University, 2019:43-77. (in Chinese with English abstract)
26 SCHNEE C, K?LLNER TOBIAS G, GERSHENZO J, et al. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiology, 2002,130(4):2049-2060. DOI:10.1104/pp.008326
doi: 10.1104/pp.008326
27 孙月琴.双条杉天牛成虫的感受器及对侧柏挥发物的行为反应.北京:北京林业大学,2008:18-94.
SUN Y Q. Sensilla and behavioral responses of adults of Semanotus bifasciatus (Coleoptera: Cerambycidae) to volatile compounds of Platycladus orientalis. Beijing: Beijing Forestry University, 2008:18-94. (in Chinese with English abstract)
28 THOLL D. Biosynthesis and biological functions of terpenoids in plants//SCHRADER J, BOHLMANN J. Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, Vol 148.
Cham, Switzerland: Springer, 2015:63-106. DOI:10.1007/10_2014_295
doi: 10.1007/10_2014_295
29 孙欢欢,高红,孙海峰,等.基于二代测序技术的黄芪萜类合成酶基因挖掘与生物信息学分析.中国实验方剂学杂志,2018,24(24):14-18. DOI:10.13422/j.cnki.syfjx.20182107
SUN H H, GAO H, SUN H F, et al. Discovery and bioinformatic analysis of terpene synthase genes in Astragali Radix by next-generation sequencing technique. Chinese Journal of Experimental Traditional Medical Formulae, 2018,24(24):14-18. (in Chinese with English abstract)
doi: 10.13422/j.cnki.syfjx.20182107
[1] 宣铃娟,程少禹,戴梦怡,王卓为,申亚梅. 紫玉兰MlSOC1基因亚细胞定位及花芽分化时期的表达分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 407-416.
[2] 顾天天,田勇,周玮,刘国发,陈黎,曾涛,吴信生,徐琪,陈国宏,卢立志. 上笼应激对绍兴鸭十二指肠组织结构、抗氧化能力及基因mRNA表达量的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 234-242.
[3] 易治鑫,蒋易龙,王秋宏,徐麒麟,王新兴,莫桂林,姜冬梅,康波. 精胺对鹅免疫器官指数及免疫相关因子基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 596-602.
[4] 梅磊, 朱晔, 肖钦之, 陈进红, 祝水金. 植物络合素合酶及其基因研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 530-538.
[5] BEGUM Mahfuj Ara, 史肖肖, 白月亮, 蒋艳冬, 周文武, 毛存贵, 祝增荣. 水稻丝氨酸棕榈酰转移酶的分子克隆、特征及其与褐飞虱抗性相关的基因表达(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 365-372.
[6] 阳毅敏, 潘灵韬, 庄浩瀚, 孙洪超, 杨怡, 陈学秋, 杜爱芳. 微小隐孢子虫黏蛋白CGD5_2060 原核表达及其黏附功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 230-236.
[7] 龙诗韵,姜冬梅,陈咨余,管成,易治鑫,康波. 外源性亚精胺对鼠卵巢生殖激素受体基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 247-252.
[8] 岳武成,陈娇,慈元吉,黄姝,王军,王成辉. 断肢再生对中华绒螯蟹蜕壳、生长及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 502-508.
[9] 郑嫩珠, 李丽, 辛清武, 缪中纬, 朱志明, 刘凤辉, 吴俭飞, 卢立志. 内参基因对TYR、MITF和ASIP基因在白绒乌骨鸡各组织表达水平的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 732-740.
[10] 孔青, 迟晨, 单世华, 李琦玉. 花生中巨大芽孢杆菌对黄曲霉毒素合成相关基因的抑制[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 567-576.
[11] 王燕,潘长田,王洁,秦力,邹滔,卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 449-457.
[12] 蒋明,陈贝贝,管铭,李金枝,黄笑梅,顾云吉. 青花菜转录因子基因BoWRKY2的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 153-159.
[13] 关小燕, 陈丽妃, 何艳军, 王洁, 卢钢*. 番茄SlMAPK7基因的亚细胞定位与组织表达特性[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 598-604.
[14] 王亚1,2, 刘建平1, 徐梦云1, 季为捷1, 凃巨民1, 张晓波1*. 水稻泛素缀合酶样蛋白基因OsCROC-1A的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 360-368.
[15] 赵丽, 夏文强, 蔡新忠*. 拟南芥AGO2的亚细胞定位分析[J]. 浙江大学学报(农业与生命科学版), 2013, 39(1): 1-.