Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (2): 269-279    DOI: 10.3785/j.issn.1008-9209.2022.03.281
园艺科学     
茭白热激转录因子基因的鉴定与分析
蔡溧聪1(),唐明佳1,徐进1,齐振宇2,范飞军3,周艳虹1()
1.浙江大学农业与生物技术学院,浙江 杭州 310058
2.浙江大学农业试验站,浙江 杭州 310058
3.丽水市农业农村局,浙江 丽水 323000
Identification and analysis of heat shock transcription factor gene in Zizania latifolia
Licong CAI1(),Mingjia TANG1,Jin XU1,Zhenyu QI2,Feijun FAN3,Yanhong ZHOU1()
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.Agriculture and Rural Affairs Bureau of Lishui, Lishui 323000, Zhejiang, China
 全文: PDF(4666 KB)   HTML
摘要:

为探究热激转录因子(heat shock transcription factor, HSF)基因家族在茭白耐热性中的功能及潜在应用,本试验以‘龙茭2号’为材料,利用生物信息学手段,鉴定出28个茭白HSF蛋白并对其进行分析。理化性质分析表明,茭白HSF家族蛋白的理论等电点为4.77~11.63,分子量为16.77~101.29 kDa,氨基酸长度为239~661个氨基酸,不稳定系数均大于40。多序列比对发现其DNA结合域具有高度保守性,长约为100个氨基酸。通过MEGA 7.0软件构建茭白、拟南芥、毛竹和水稻的HSF蛋白系统发育树,发现HSF蛋白可以分为A、B、C 3个分支,茭白HSF家族中含有17个A类成员、7个B类成员、4个C类成员。进一步通过实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, qRT-PCR)分析高温胁迫下茭白HSF基因家族的表达模式和热胁迫生理指标,结果表明,有14个HSF基因在高温胁迫(42 ℃,12 h)后处于高表达水平(表达量提高10倍以上),其中ZlHSF-04、ZlHSF-12、ZlHSF-27表达量上调最明显,与常温对照组(CK)相比分别上调37倍、36倍、44倍;同时,高温胁迫下茭白幼苗叶片出现大面积失水失绿的现象,叶片干枯卷曲,且光系统Ⅱ最大光化学效率较CK降低了49.9%,而相对电导率,丙二醛、脯氨酸、过氧化氢含量与CK相比分别增加了409%、97%、396%和99%。本结果为进一步研究HSF基因家族在茭白热激响应中的功能提供了理论依据。

关键词: 茭白热激转录因子基因家族表达分析    
Abstract:

To explore the function and potential applications of heat shock transcription factor (HSF) gene family on heat tolerance of Zizania latifolia of ‘Longjiao No. 2’, twenty-eight HSF proteins were identified and analyzed by bioinformatics methods. The physicochemical analysis showed that the theoretical isoelectric point was 4.77 to 11.63, and the molecular weight was 16.77-101.29 kDa, and the protein length was 239-661 amino acids, and the instability indexes of the whole family were more than 40. The multiple sequence alignment revealed that the DNA-binding domain of HSF protein was highly conserved with a length of about 100 amino acids. The phylogenetic tree of HSF proteins of Z. latifolia, Arabidopsis thaliana, Phyllostachys edulis, and Oryza sativa L. was constructed by MEGA 7.0 and the HSF proteins could be divided into A, B, and C classes. In the HSF family of Z. latifolia, there were 17 members in class A, seven in class B, and four in class C. The expression profiles of HSF genes under the heat stress was analyzed by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR), and the physiological indexes under the heat stress were also measured. The results showed that 14 HSF genes were at high expression levels (the expression levels were increased by more than 10 times) after the heat stress (42 ℃, 12 h). Among them, the expression levels of ZlHSF-04, ZlHSF-12, and ZlHSF-27 were up-regulated most obviously, which increased by 37, 36, and 44 times when compared with the normal temperature treatment (CK), respectively. Moreover, under the heat stress, the leaves became dry and curled with a large area of water loss and chlorosis, and the maximum photochemical efficiency (Fv /Fm) of photosystem Ⅱ was significantly reduced by 49.9% compared with the CK. Besides, the relative electrical leakage (REL), and the contents of malondialdehyde (MDA), proline (Pro), hydrogen peroxide (H2O2) increased significantly by 409%, 97%, 396%, and 99%, respectively. These results lay theoretical foundations for further study of the functions of the HSF gene family under heat stress of Z. latifolia.

Key words: Zizania latifolia    heat stock transcription factor    gene family    expression analysis
收稿日期: 2022-03-28 出版日期: 2023-04-25
CLC:  S645.2  
基金资助: 国家现代农业产业技术体系建设专项(CARS-24-B-01)
通讯作者: 周艳虹     E-mail: 21916121@zju.edu.cn;yanhongzhou@zju.edu.cn
作者简介: 蔡溧聪(https://orcid.org/0000-0002-5273-7587),E-mail:21916121@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蔡溧聪
唐明佳
徐进
齐振宇
范飞军
周艳虹

引用本文:

蔡溧聪,唐明佳,徐进,齐振宇,范飞军,周艳虹. 茭白热激转录因子基因的鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 269-279.

Licong CAI,Mingjia TANG,Jin XU,Zhenyu QI,Feijun FAN,Yanhong ZHOU. Identification and analysis of heat shock transcription factor gene in Zizania latifolia. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 269-279.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.03.281        https://www.zjujournals.com/agr/CN/Y2023/V49/I2/269

基因编号

Gene ID

基因名称

Gene name

家族

Family

理论等电点

Theoretical pI

分子量

Molecular weight/kDa

氨基酸长度

Amino acid length

脂肪族

氨基酸指数

Aliphatic index

不稳定系数

Instability index

Zlat_10030921ZlHSF-01ZlHSFA26.5647.9242171.1450.37
Zlat_10024731ZlHSF-02ZlHSFA35.3850.3166171.5755.25
Zlat_10028403ZlHSF-03ZlHSFB25.4239.7940669.2054.93
Zlat_10001846ZlHSF-04ZlHSFA64.9941.0036370.4158.62
Zlat_10030564ZlHSF-05ZlHSFB46.8134.8931663.6463.14
Zlat_10023805ZlHSF-06ZlHSFA26.1240.8636165.5756.14
Zlat_10004208ZlHSF-07ZlHSFA45.1349.1944055.8656.56
Zlat_10032890ZlHSF-08ZlHSFA45.2249.0943857.4259.31
Zlat_10001964ZlHSF-09ZlHSFA45.1153.4247371.5253.24
Zlat_10014007ZlHSF-10ZlHSFB211.6316.7723973.4150.20
Zlat_10001414ZlHSF-11ZlHSFA65.6241.0635970.6751.55
Zlat_10037146ZlHSF-12ZlHSFB24.7733.1931257.3757.35
Zlat_10046041ZlHSF-13ZlHSFA45.1548.4643368.2255.59
Zlat_10041443ZlHSF-14ZlHSFB46.7230.9852764.7572.44
Zlat_10039236ZlHSF-15ZlHSFA25.6040.7035969.4452.13
Zlat_10004295ZlHSF-16ZlHSFA15.0151.9546772.0357.19
Zlat_10031706ZlHSF-17ZlHSFA14.8951.9446772.4456.88
Zlat_10047617ZlHSF-18ZlHSFB19.1332.5130067.5259.53
Zlat_10021194ZlHSF-19ZlHSFB49.2238.7735072.0348.77
Zlat_10001491ZlHSF-20ZlHSFC19.2526.7924670.2849.84
Zlat_10003200ZlHSF-21ZlHSFC25.6931.6129169.4240.53
Zlat_10019123ZlHSF-22ZlHSFA96.2945.1441471.4044.88
Zlat_10001624ZlHSF-23ZlHSFC15.8936.3233673.8756.13
Zlat_10004100ZlHSF-24ZlHSFC18.6826.8024470.0842.6
Zlat_10041209ZlHSF-25ZlHSFA85.0145.3640865.9649.64
Zlat_10024292ZlHSF-26ZlHSFA85.01101.2940969.8848.26
Zlat_10029481ZlHSF-27ZlHSFA24.9938.9934972.3848.31
Zlat_10027049ZlHSF-28ZlHSFA24.9638.9435373.2643.05
表1  茭白HSF家族成员的理化性质
图1  茭白HSF蛋白DNA结合域多重序列比对
图 2  茭白、毛竹、拟南芥和水稻的HSF蛋白系统发育树
图3  茭白HSF家族成员保守基序的种类与分布
图4  茭白HSF家族成员上游启动子分布
图5  茭白HSF家族基因结构
图6  茭白HSF基因家族在高温胁迫下的表达谱
图7  高温胁迫对茭白幼苗表型(A)和 Fv /Fm (B)的影响短栅上不同小写字母表示在P<0.05水平差异有统计学意义;n=3。下同。
图8  高温胁迫对茭白叶片相对电导率(A)、丙二醛含量(B)、脯氨酸含量(C)和H2O2 含量(D)的影响
1 王睿斌.小麦转录因子TaMYB108基因的克隆、表达分析及耐盐功能的研究[D].湖北,武汉:华中科技大学,2017.
WANG R B. Cloning, expression and functional analysis of a wheat transcription factor gene TaMYB108 [D]. Wuhan, Hubei: Huazhong University of Science and Technology, 2017. (in Chinese with English abstract)
2 刘栩铭,李敏,段琼,等.蓖麻RcHSF基因家族鉴定与冷胁迫下的表达模式分析[J].华北农学报,2020,35(5):62-71. DOI:10.7668/hbnxb.20191312
LIU X M, LI M, DUAN Q, et al. Identification of RcHSF gene family in castor and analysis of expression pattern under cold stress[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 62-71. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20191312
3 黄小云.大白菜和甘蓝热激转录因子基因家族鉴定及比较分析[D].江苏,南京:南京农业大学,2014. DOI:10.1007/s00438-014-0833-5
HUANG X Y. Genome-wide identification, classification and comparative analysis of heat shock transcription factor genes family in Chinese cabbage and cabbage[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2014. (in Chinese with English abstract)
doi: 10.1007/s00438-014-0833-5
4 陈勇兵,王燕,张海利.番茄热激转录因子(Hsf)基因家族鉴定及表达分析[J].农业生物技术学报,2015,23(4):492-501. DOI:10.3969/j.issn.1674-7968.2015.04.008
CHEN Y B, WANG Y, ZHANG H L. Identification and expression analysis of heat shock factor (Hsf) gene family in tomato (Solanum lycopersicum)[J]. Journal of Agricultural Biotechnology, 2015, 23(4): 492-501. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.04.008
5 BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences, 2004, 29(4): 471-487. DOI: 10.1007/BF02712120
doi: 10.1007/BF02712120
6 GUO J K, WU J, JI Q, et al. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis [J]. Journal of Genetics and Genomics, 2008, 35(2): 105-118. DOI: 10.1016/S1673-8527(08)60016-8
doi: 10.1016/S1673-8527(08)60016-8
7 SCHARF K D, ROSE S, ZOTT W, et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. The EMBO Journal, 1990, 9(13): 4495.
8 NOVER L, BHARTI K, DÖRING P, et al. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones, 2001, 6(3): 177-189. DOI: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
9 MISHRA S K, TRIPP J, WINKELHAUS S, et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato[J]. Genes and Development, 2002, 16(12): 1555-1567. DOI: 10.1101/gad.228802
doi: 10.1101/gad.228802
10 CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis [J]. Plant Physiology, 2007, 143(1): 251-262. DOI: 10.1104/pp.106.091322
doi: 10.1104/pp.106.091322
11 韦满棋.茭白种植现状及发展建议[J].新农业,2021,17:44-45.
WEI M Q. Current situation and development suggestions of Zizania latifolia cultivation[J]. New Agriculture, 2021, 17: 44-45. (in Chinese)
12 董桂君,乔勇进,王春芳,等.茭白采后生理变化及保鲜技术研究进展[J].保鲜与加工,2021,21(9):133-138. DOI:10.3969/j.issn.1009-6221.2021.09.021
DONG G J, QIAO Y J, WANG C F, et al. A review of research on postharvest physiological changes and color protection and freshness of Zizania latifolia [J]. Storage and Process, 2021, 21(9): 133-138. (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-6221.2021.09.021
13 石敏.茭白黑粉菌耐热突变体的筛选与抗氧化特征研究[D].浙江,杭州:浙江大学,2013.
SHI M. Screening and antioxidant characteristics of heat-resistant mutants of Ustilago esculenta H.[D]. Hangzhou, Zhejiang: Zhejiang University, 2013. (in Chinese with English abstract)
14 邓建平,石敏,黄建中,等.不同海拔高度对茭白生长及孕茭的影响[J].中国蔬菜,2013(12):88-93. DOI:10.19928/j.cnki.1000-6346.2013.12.015
DENG J P, SHI M, HUANG J Z, et al. Effects of different altitudes on growth and culm-swelling of Zizania caduciflora (Turcz.) Hand.-Mazz.[J]. China Vegetables, 2013(12): 88-93. (in Chinese with English abstract)
doi: 10.19928/j.cnki.1000-6346.2013.12.015
15 娄伟平,吴旭江.高温干旱对新昌高山茭白的影响及对策[J].浙江气象,2004(3):24-26. DOI:10.3969/j.issn.1004-5953.2004.03.006
LOU W P, WU X J. Effects of high temperature and drought on Xinchang alpine Zizania latifolia and countermeasures[J]. Journal of Zhejiang Meteorology, 2004(3): 24-26. (in Chinese)
doi: 10.3969/j.issn.1004-5953.2004.03.006
16 LIN Y X, JIANG H Y, CHU Z X, et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011, 12: 76. DOI: 10.1186/1471-2164-12-76
doi: 10.1186/1471-2164-12-76
17 GIORNO F, GUERRIERO G, BARIC S, et al. Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis[J]. BMC Genomics, 2012, 13: 639. DOI: 10.1186/1471-2164-13-639
doi: 10.1186/1471-2164-13-639
18 CHUNG E, KIM K M, LEE J H. Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max [J]. Journal of Genetics Genomics, 2013, 40(3): 127-135. DOI: 10.1016/j.jgg.2012.12.002
doi: 10.1016/j.jgg.2012.12.002
19 LIU A L, ZOU J, ZHANG X W, et al. Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses[J]. Journal of Plant Biology, 2010, 53(2): 142-149. DOI: 10.1007/s12374-010-9099-6
doi: 10.1007/s12374-010-9099-6
20 ZHOU N N, AN Y L, GUI Z C, et al. Identification and expression analysis of chitinase genes in Zizania latifolia in response to abiotic stress[J]. Scientia Horticulture, 2020, 261: 108952. DOI: 10.1016/j.scienta.2019.108952
doi: 10.1016/j.scienta.2019.108952
21 ZHOU S J, ZHANG P, JING Z G, et al. Genome-wide identification and analysis of heat shock transcription factor family in cucumber (Cucumis sativus L.)[J]. Plant Omics, 2013, 6(6): 449-455.
22 BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 2006, 34(Web Server issue): W369-W373. DOI: 10.1093/nar/gkl198
doi: 10.1093/nar/gkl198
23 VON KOSKULL-DÖRING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10): 452-457. DOI: 10.1016/j.tplants.2007.08.014
doi: 10.1016/j.tplants.2007.08.014
24 CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. DOI: 10.1016/j.molp.2020.06.009
doi: 10.1016/j.molp.2020.06.009
25 SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family: structure, function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2): 104-119. DOI: 10.1016/j.bbagrm.2011.10.002
doi: 10.1016/j.bbagrm.2011.10.002
26 TANG M J, XU L, WANG Y, et al. Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.)[J]. BMC Genomics, 2019, 20: 772. DOI: 10.1186/s12864-019-6121-3
doi: 10.1186/s12864-019-6121-3
27 HUANG B, HUANG Z N, MA R F, et al. Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis)[J]. Scientific Report, 2021, 11: 16492. DOI: 10.1038/s41598-021-95899-3
doi: 10.1038/s41598-021-95899-3
28 QI T C, HUANG H, SONG S S, et al. Regulation of jasmonate mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis [J]. The Plant Cell, 2015, 27(6): 1620-1633. DOI: 10.1105/tpc.15.00116
doi: 10.1105/tpc.15.00116
29 董立红,范瑞,陈永欣,等.玉米热激转录因子基因ZmHSF05的克隆与功能分析[J].西北植物学报,2020,40(8):1294-1302. DOI:10.7606/j.issn.1000-4025.2020.08.1294
DONG L H, FAN R, CHEN Y X, et al. Cloning and functional analysis of maize heat shock transcription factor gene ZmHSF05 [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8): 1294-1302. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2020.08.1294
30 EXPÓSITO-RODRÍGUEZ M, BORGES A A, BORGES-PÉREZ A, et al. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato develop-ment process[J]. BMC Plant Biology, 2008, 8: 131. DOI: 10.1186/1471-2229-8-131
doi: 10.1186/1471-2229-8-131
31 HAHN A, BUBLAK D, SCHLEIFF E, et al. Crosstalk between Hsp90 and Hsp70chaperones and heat stress transcription factors in tomato[J]. The Plant Cell, 2011, 23(2): 741-755. DOI: 10.1105/tpc.110.076018
doi: 10.1105/tpc.110.076018
32 CZARNECKA-VERNER E, YUAN C X, SCHARF K D, et al. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential[J]. Plant Molecular Biology, 2000, 43: 459-471.
33 GUO M, LIU J H, MA X, et al. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016, 7: 114. DOI: 10.3389/fpls.2016.00114
doi: 10.3389/fpls.2016.00114
34 PERSONAT J M, TEJEDOR-CANO J, PRIETO-DAPENA P, et al. Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress[J]. BMC Plant Biology, 2014, 14: 56. DOI: 10.1186/1471-2229-14-56
doi: 10.1186/1471-2229-14-56
35 WANG R, MAO C J, JIANG C H, et al. One heat shock transcription factor confers high thermal tolerance in clematis plants[J]. International Journal of Molecular Sciences, 2021, 22(6): 2900. DOI: 10.3390/ijms22062900
doi: 10.3390/ijms22062900
36 SUZUKI N, BAJAD S, SHUMAN J, et al. The transcrip-tional co-activator MBFIc is a key regulator of thermo-tolerance in Arabidopsis thaliana [J]. Journal of Biology and Chemistry, 2008, 283(14): 9269-9275. DOI: 10.1074/jbc.M709187200
doi: 10.1074/jbc.M709187200
[1] 姚紫薇,孙婧靓,刘建祥,芦海平. 拟南芥热激转录因子HSFB2b负调控植物热形态建成[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 23-30.
[2] 张超,王妮,施哲逸,陈敏,周文武,周瀛,祝增荣. 昆虫热激转录因子的研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 701-708.
[3] 洪敏,贺明阳,王日葵,周炼,王晶,冯雨. 塔罗科血橙室温贮藏期间花色苷和糖酸积累变化及相关代谢基因表达特征[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 589-597.
[4] 朱乐,赵鑫泽,蒋立希. 甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 303-313.
[5] 王尤轩,王梦雨,李煜博,陶晗,夏楚楚,黄凯美,汪俏梅. 芥蓝Aux/IAA家族基因生物信息学与表达分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 314-324.
[6] 万发香,王连臻,高军. 茄子1-氨基环丙烷-1-羧酸合成酶基因的生物信息学及其响应逆境胁迫的表达分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 325-334.
[7] 宣铃娟,程少禹,戴梦怡,王卓为,申亚梅. 紫玉兰MlSOC1基因亚细胞定位及花芽分化时期的表达分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 407-416.
[8] 张翰卿,郜海燕,刘瑞玲,韩延超,房祥军,陈杭君. 不同厚度聚乙烯袋包装对茭白采后品质和木质化的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 55-63.
[9] 马广莹,朱开元,史小华,邹清成,刘慧春,詹菁,田丹青. 红掌2个SOC1基因的克隆、序列与表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 289-297.
[10] 陈贝贝, 蒋明, 苗立祥, 李温平. 青花菜转录因子基因BoWRKY3的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 243-249.
[11] 王静,刘丽,张志明,赵茂俊,潘光堂. 玉米病程相关蛋白1基因的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 35-42.
[12] 蒋 明,陈孝赏,李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表达与序列分析[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 393-398.
[13] 冯英, 俞朝. 水稻与拟南芥全基因组丝氨酸羧肽酶类蛋白家族比较分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2009, 35(1): 1-15.