Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (1): 23-30    DOI: 10.3785/j.issn.1008-9209.2022.01.112
生物科学与技术     
拟南芥热激转录因子HSFB2b负调控植物热形态建成
姚紫薇1(),孙婧靓2,刘建祥1(),芦海平1()
1.浙江大学生命科学学院,浙江 杭州 310058
2.大连民族大学环境与资源学院,辽宁 大连 116600
Heat shock transcription factor HSFB2b negatively regulates plant thermomorphogenesis in Arabidopsis
Ziwei YAO1(),Jingliang SUN2,Jianxiang LIU1(),Haiping LU1()
1.College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.College of Environment and Bioresources, Dalian Minzu University, Dalian 116600, Liaoning, China
 全文: PDF(2331 KB)   HTML
摘要:

为探究参与极端高温环境应答的热激转录因子(heat shock transcription factor, HSF)是否也参与了温和高温下的植物热形态建成,本研究通过CRISPR/Cas9基因编辑技术,结合一系列生理生化和遗传学实验,以及效应因子-报告基因系统(effector-reporter)等实验方法,发现热激转录因子HSFB2b受温和高温诱导,在热形态建成过程中发挥着重要作用。在温和高温(29 ℃)下,拟南芥突变体hsfb2b表现出比野生型更长的下胚轴表型,揭示HSFB2b作为负调控因子在热形态建成中发挥作用。亚细胞定位实验表明,HSFB2b蛋白在细胞核中发挥功能。实时荧光定量聚合酶链反应分析表明,温和高温下野生型植株中热激蛋白(heat shock proteins, HSPs)基因、热激转录因子HSFA2和茉莉酸降解基因ST2A相对于常温(22 ℃)时表达上调,但这些基因在突变体hsfb2b中上调倍数更大。此外,效应因子-报告基因系统实验证实HSFB2b可以结合ST2A启动子热激元件(heat shock element, HSE),从而抑制ST2A表达。综上所述,受温和高温诱导的热激转录因子HSFB2b在下胚轴伸长调控中起负调控作用,并且在分子机制上HSFB2b通过识别HSE元件,负调控茉莉酸降解相关基因ST2A的表达,从而负调控植物热形态建成。

关键词: 拟南芥热形态建成热激转录因子茉莉酸代谢下胚轴伸长    
Abstract:

In order to explore whether heat shock transcription factor (HSF) known to be involved in plant adaptation to extreme heat stress is also involved in plant thermomorphogenesis at warm temperatures, the result of CRISPR/Cas9 gene editing, physiological and biochemical, genetic experiments, and effector-reporter assay demonstrated that the heat shock transcription factor HSFB2b was induced by the warm temperature and played an important role in the process of plant thermomorphogenesis. Under the warm temperature (29 ℃), the Arabidopsis mutant hsfb2b exhibited a longer hypocotyl than the wild type, suggesting that HSFB2b functioned as a negative regulator in thermomorphogenesis. Subcellular localization results showed that the HSFB2b protein was localized in the nucleus. Real-time quantitative polymerase chain reaction (qRT-PCR) analysis showed that the heat shock proteins (HSPs) gene, the heat shock transcription factor HSFA2, and the jasmonic acid degradation gene ST2A were up-regulated in the wild type under the warm temperature relative to the normal temperature (22 ℃), but these genes were more up-regulated by the warm temperature in the hsfb2b mutant than that in the wild type. Furthermore, effector-reporter assay demonstrated that HSFB2b could inhibit ST2A expression by binding to the heat shock element (HSE). In conclusion, the heat shock transcription factor HSFB2b induced by the warm temperature played a negative regulatory role in the hypocotyl elongation and negatively regulated the expression of gene ST2A by recognizing the HSE in molecular mechanism, thusnegatively regulated the plant thermomorphogenesis.

Key words: Arabidopsis    thermomorphogenesis    heat shock transcription factor    jasmonic acid catabolism    hypocotyl elongation
收稿日期: 2022-01-11 出版日期: 2023-03-07
CLC:  Q943.2  
基金资助: 中央高校基本科研业务费专项资金(2021XZZX023);国家自然科学基金项目(31872653)
通讯作者: 刘建祥,芦海平     E-mail: 21907011@zju.edu.cn;jianxiangliu@zju.edu.cn;luhaiping@zju.edu.cn
作者简介: 姚紫薇(https://orcid.org/0000-0001-5259-585X),E-mail:21907011@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚紫薇
孙婧靓
刘建祥
芦海平

引用本文:

姚紫薇,孙婧靓,刘建祥,芦海平. 拟南芥热激转录因子HSFB2b负调控植物热形态建成[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 23-30.

Ziwei YAO,Jingliang SUN,Jianxiang LIU,Haiping LU. Heat shock transcription factor HSFB2b negatively regulates plant thermomorphogenesis in Arabidopsis. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 23-30.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.01.112        https://www.zjujournals.com/agr/CN/Y2023/V49/I1/23

基因

Gene

编号

Code

引物序列(5→3

Primer sequence (5→3)

HSFB2aAT5G62020F: CTATCCCAACGCCGTTTCTC
R: CGAAATCTGTCGGATTCCATACGA
HSFB2bAT4G11660F: TTGTTCGTCAGCTCAATACTTACG
R: TTTCCGCCGTTGAATATCCCGAA
HSFA2AT2G26150F: GCGGCTTCTTCATCTGTA
R: CTGTTACGACCATTACTCCAA
ST2AAT5G07010F: ATCCCAAGTTTCTCCATGTG
R: AACATCTCTTGGAACTCGCA
HSP17.6AAT1G59860F: ATGGGATCCATTCAAGGAACTT
R: TTCTTTCTTCATCCCCGGTAAA
HSP17.8AT1G07400F: CTCAAGATCAGTGGAGAGAGAC
R: CTTCTTCTTAGCCTCTTCCACT
HSP23.6AT4G25200F: ATGGCATCTGCTCTCGCTCT
R: AGGAACAGAGCGGCGATATA
PP2AAT1G13320F: TAACGTGGCCAAAATGATGC
R: GTTCTCCACAACCGCTTGGT
表1  qRT-PCR实验中所用引物
图1  温和高温下同源基因 HSFB2a 和 HSFB2b 的表达情况A. 拟南芥中HSFB亚家族蛋白质序列的同源性比对;B~C. HSFB2a及HSFB2b在不同温度下的表达量。n=3。
图2  HSFB2b 在拟南芥热形态建成中的负调控作用A~B. hsfb2a和hsfb2b的突变序列;C~D. 拟南芥下胚轴表型和长度。WT:野生型。短栅上不同小写字母表示在P<0.05水平差异有统计学意义,下同。
图3  HSFB2a及HSFB2b蛋白的亚细胞定位
图4  温和高温下 HSFB2b 下游基因表达情况
图5  HSFB2b 负调控热形态建成A. 效应因子-报告基因载体构建示意图;B. 相对荧光素酶活性;C. HSFB2b调控植物热形态建成的工作模型图。*表示在P<0.05水平差异有统计学意义。
1 QUINT M, DELKER C, FRANKLIN K A, et al. Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2016, 2(1): 15190. DOI: 10.1038/nplants.2015.190
doi: 10.1038/nplants.2015.190
2 CASAL J J, BALASUBRAMANIAN S. Thermomorphogenesis[J]. Annual Review of Plant Biology, 2019, 70: 321-346. DOI: 10.1146/annurev-arplant-050718-095919
doi: 10.1146/annurev-arplant-050718-095919
3 ZHANG L L, LUO A, DAVIS S J, et al. Timing to grow: roles of clock in thermomorphogenesis[J]. Trends in Plant Science, 2021, 26(12): 1248-1257. DOI: 10.1016/j.tplants.2021.07.020
doi: 10.1016/j.tplants.2021.07.020
4 DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development[J]. Annual Review of Plant Biology, 2016, 67: 513-537. DOI: 10.1146/annurev-arplant-043015-112252
doi: 10.1146/annurev-arplant-043015-112252
5 VU L D, XU X Y, GEVAERT K, et al. Developmental plasticity at high temperature[J]. Plant Physiology, 2019, 181(2): 399-411. DOI: 10.1104/pp.19.00652
doi: 10.1104/pp.19.00652
6 LEGRIS M, KLOSE C, BURGIE E S, et al. Phytochrome B integrates light and temperature signals in Arabidopsis [J]. Science, 2016, 354(6314): 897-900. DOI: 10.1126/science.aaf5656
doi: 10.1126/science.aaf5656
7 CHENG M C, KATHARE P K, PAIK I, et al. Phytochrome signaling networks[J]. Annual Review of Plant Biology, 2021, 72: 217-244. DOI: 10.1146/annurev-arplant-080620-024221
doi: 10.1146/annurev-arplant-080620-024221
8 LEE N Y, CHOI G. Phytochrome-interacting factor from Arabidopsis to liverwort[J]. Current Opinion in Plant Biology, 2017, 35: 54-60. DOI: 10.1016/j.pbi.2016.11.004
doi: 10.1016/j.pbi.2016.11.004
9 LEIVAR P, QUAIL P H. PIFs: pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1): 19-28. DOI: 10.1016/j.tplants.2010.08.003
doi: 10.1016/j.tplants.2010.08.003
10 FRANKLIN K A, LEE S H, PATEL D, et al. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature[J]. PNAS, 2011, 108(50): 20231-20235. DOI: 10.1073/pnas.1110682108
doi: 10.1073/pnas.1110682108
11 汪硕,丁岚,刘建祥,等.拟南芥热形态建成中PIF4下游基因研究[J].生物技术通报,2018,34(7):57-65. DOI:10.13560/j.cnki.biotech.bull.1985.2018-0211
WANG S, DING L, LIU J X, et al. PIF4-regulated thermo-responsive genes in Arabidopsis [J]. Biotechnology Bulletin, 2018, 34(7): 57-65. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211
12 SUN J L, QI L L, LI Y N, et al. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth[J]. PLoS Genetics, 2012, 8(3): e1002594. DOI: 10.1371/journal.pgen.1002594
doi: 10.1371/journal.pgen.1002594
13 BELLSTAEDT J, TRENNER J, LIPPMANN R, et al. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls[J]. Plant Physiology, 2019, 180(2): 757-766. DOI: 10.1104/pp.18.01377
doi: 10.1104/pp.18.01377
14 BERBARDO-GARCÍA S, DE LUCAS M, MARTÍNEZ C, et al. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth[J]. Genes and Development, 2014, 28(15): 1681-1694. DOI: 10.1101/gad.243675.114
doi: 10.1101/gad.243675.114
15 BAI M Y, SHANG J X, OH E, et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis [J]. Nature Cell Biology, 2012, 14(8): 810-817. DOI: 10.1038/ncb2546
doi: 10.1038/ncb2546
16 LU H P, WANG J J, WANG M J, et al. Roles of plant hormones in thermomorphogenesis[J]. Stress Biology, 2021, 1: 20. DOI: 10.1007/s44154-021-00022-1
doi: 10.1007/s44154-021-00022-1
17 ZHU T T, HERRFURTH C, XIN M M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promoter plant growth[J]. Nature Communic-ations, 2021, 12: 4804. DOI: 10.1038/s41467-021-24883-2
doi: 10.1038/s41467-021-24883-2
18 JACOB P, HIRT H, BENDAHMANE A. The heat-shock protein/chaperone network and multiple stress resistance[J]. Plant Biotechnology Journal, 2017, 15(4): 405-414. DOI: 10.1111/pbi.12659
doi: 10.1111/pbi.12659
19 GUO M, LIU J H, MA X, et al. The plant heat stress transcript factors (HSFs): structure, regulation, and function in response to abiotic stress[J]. Frontiers in Plant Science, 2016, 7: 114. DOI: 10.3389/fpls.2016.00114
doi: 10.3389/fpls.2016.00114
20 SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family: structure, function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2): 104-119. DOI: 10.1016/j.bbagrm.2011.10.002 .
doi: 10.1016/j.bbagrm.2011.10.002
21 HAHN A, BUBLAK D, SCHLEIFF E, et al. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato[J]. The Plant Cell, 2011, 23(2): 741-755. DOI: 10.1105/tpc.110.076018
doi: 10.1105/tpc.110.076018
22 FRAGKOSTEFANAKIS S, MESIHOVIC A, SIMM S, et al. HsfA2 control the activity of developmentally and stress-regulated heat stress protection mechanism in tomato male reproductive tissue[J]. Plant Physiology, 2016, 170(4): 2461-2477. DOI: 10.1104/pp.15.01913
doi: 10.1104/pp.15.01913
23 LIU H C, CHANG Y Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress response and development[J]. Plant Physiology, 2013, 163(1): 276-290. DOI: 10.1104/pp.113.221168
doi: 10.1104/pp.113.221168
24 LIU H C, LIAO H T, CHANG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stress in Arabidopsis [J]. Plant Cell & Environment, 2011, 34(5): 738-751. DOI: 10.1111/j.1365-3040.2011.02278.x
doi: 10.1111/j.1365-3040.2011.02278.x
25 RÖTH S, MIRUS O, BUBLAK D, et al. DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1[J]. The Plant Journal, 2017, 89(1): 31-44. DOI: 10.1111/tpj.13317
doi: 10.1111/tpj.13317
26 FRAGKOSTEFANAKIS S, SIMM S, EL-SHERSHABY A, et al. The repressor and co-activator HsfB1 regulate the major heat stress transcription factors in tomato[J]. Plant Cell & Environment, 2019, 42(3): 874-890. DOI: 10.1111/pce.13434
doi: 10.1111/pce.13434
27 DING L, WANG S, SONG Z T, et al. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis [J]. Cell Reports, 2018, 25(7): 1718-1728. DOI: 10.1016/j.celrep.2018.10.060
doi: 10.1016/j.celrep.2018.10.060
28 JUNG J H, BARBOSA A, HUTIN S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis [J]. Nature, 2020, 585(7824): 256-260. DOI: 10.1038/s41586-020-2644-7
doi: 10.1038/s41586-020-2644-7
29 ZHANG L L, LI W, TIAN Y Y, et al. The E3 ligase XBAT35 mediates thermoresponsive hypocotyl growth by targeting ELF3 for degradation in Arabidopsis [J]. Journal of Integrative Plant Biology, 2021, 63(6): 1097-1103. DOI: 10.1111/jipb.13107
doi: 10.1111/jipb.13107
[1] 张超,王妮,施哲逸,陈敏,周文武,周瀛,祝增荣. 昆虫热激转录因子的研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 701-708.
[2] 王莎莎, 孙利利, 肖素勤, 周磊, 孙振, 陈丽梅. 叶片喷施C1 化合物对拟南芥生理特性和C1 代谢、光合作用及胁迫相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 631-641.
[3] 张好富, 张宪银. 一种不依赖于无菌培养的拟南芥活体转基因种子筛选方法[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 372-376.
[4] 冯英, 俞朝. 水稻与拟南芥全基因组丝氨酸羧肽酶类蛋白家族比较分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2009, 35(1): 1-15.
[5] 张扬  徐国华  樊龙江 . 植物基因转录起始频率分析[J]. 浙江大学学报(农业与生命科学版), 2006, 32(2): 119-122.
[6] 李娟  薛庆中. 拟南芥及水稻转录因子MADS密码子的偏好性比较[J]. 浙江大学学报(农业与生命科学版), 2005, 31(5): 513-517.