Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (3): 328-340    DOI: 10.3785/j.issn.1008-9209.2022.04.291
园艺科学     
基于代谢组学和转录组学挖掘荷叶生物碱合成途径关键基因
李双琴(),汪仲毅,赵琬玥,陈龙清,胡慧贞()
西南林业大学园林园艺学院/云南省功能性花卉资源及产业化技术工程研究中心,云南 昆明 650224
Mining key genes of alkaloid synthesis pathway in lotus leaves based on metabolomics and transcriptomics
Shuangqin LI(),Zhongyi WANG,Wanyue ZHAO,Longqing CHEN,Huizhen HU()
College of Landscape Archi-tecture and Horticulture Sciences, Southwest Forestry University/Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Kunming 650224, Yunnan, China
 全文: PDF(5437 KB)   HTML
摘要:

为探究荷叶生物碱生物合成的分子机制,对生物碱含量差异显著品种‘太空莲’(高生物碱含量)、‘巨无霸’(中生物碱含量)和‘大足红莲’(低生物碱含量)的成熟荷叶进行代谢组学和转录组学测序分析。代谢组学分析发现,在‘大足红莲’及‘太空莲’(低生物碱含量vs高生物碱含量)、‘大足红莲’及‘巨无霸’(低生物碱含量vs中生物碱含量)、‘太空莲’及‘巨无霸’(高生物碱含量vs中生物碱含量)3组中分别存在30、32、14种差异代谢物。这些差异代谢物主要为3类异喹啉类生物碱——苄基异喹啉类、双苄基异喹啉类、阿朴啡类生物碱,包括山矾碱、3-葡萄糖基-6,7-二羟基-N-甲基-苄基四氢异喹啉、多巴胺、L-酪胺等。为了挖掘上述异喹啉类生物碱生物合成途径的关键基因,进一步对3个品种进行转录组学测序分析。结果表明,‘大足红莲’及‘太空莲’、‘大足红莲’及‘巨无霸’、‘太空莲’及‘巨无霸’3组中的差异表达基因(differentially expressed genes, DEGs)分别为2 866、2 739、3 932个,共有的DEGs有379个,这些共有基因中含有异喹啉类生物碱生物合成途径基因。结合代谢组学分析结果,最终筛选并通过实时荧光定量聚合酶链反应验证得到6个关键DEGs——NnCYP80GNn6OMTNnTYDCNnNCSNnRAVNnERF,它们可用于后续基因功能验证和分子调控网络解析。

关键词: 荷叶生物碱差异代谢物差异表达基因实时荧光定量聚合酶链反应    
Abstract:

In order to explore the molecular mechanism of alkaloid biosynthesis in lotus leaves, metabolomics and transcriptomics sequencing analyses were performed on mature lotus leaves of ‘Taikong Lian’ (high alkaloid content), ‘Juwuba’ (medium alkaloid content) and ‘Dazu Honglian’ (low alkaloid content) cultivars with significant differences in alkaloid content. Metabolomics analysis showed that there were 30, 32 and 14 different metabolites in the three groups of ‘Dazu Honglian’ vs ‘Taikong Lian’ (low vs high alkaloid content), ‘Dazu Honglian’ vs ‘Juwuba’ (low vs medium alkaloid content), and ‘Taikong Lian’ vs ‘Juwuba’ (high vs medium alkaloid content), respectively. These differential metabolites were mainly three types of isoquinoline alkaloids, namely benzylisoquinoline, bis-benzylisoquinoline and aporphine alkaloids, specifically including caaverine, 3-glucosyl-6, 7-dihydroxy-N-methyl-benzyltetrahydroisoquinoline, dopamine, L-tyramine, etc. To further explore the key genes of the above isoquinoline alkaloid biosynthesis pathway, the transcriptomics sequencing analysis of three cultivars were performed. The numbers of differentially expressed genes (DEGs) among the three groups (‘Dazu Honglian’ vs ‘Taikong Lian’, ‘Dazu Honglian’ vs ‘Juwuba’, and ‘Taikong Lian’ vs ‘Juwuba’) were 2 866, 2 739 and 3 932, respectively; and there were 379 DEGs in common, which contained isoquinoline alkaloid biosynthesis pathway genes. Combined with the results of metabolomics analysis, six key DEGs, including NnCYP80G, Nn6OMT, NnTYDC, NnNCS, NnRAV and NnERF, were finally screened and verified by real-time fluorescent quantitative polymerase chain reaction, which can be used for subsequent gene function verification and molecular regulation network analysis.

Key words: lotus leaf alkaloids    differential metabolites    differentially expressed genes (DEGs)    real-time fluorescent quantitative polymerase chain reaction
收稿日期: 2022-04-29 出版日期: 2023-06-25
CLC:  S682.32  
基金资助: 国家自然科学基金项目(31860231);云南省高层次人才引进计划产业人才专项“云南省荷花种质资源创新及其产业化培育项目”(YNQR-CYRC-2018-007);西南林业大学科研启动基金项目(01102-112109)
通讯作者: 胡慧贞     E-mail: lishuangqin@swfu.edu.cn;Jenny_0129@swfu.edu.cn
作者简介: 李双琴(https://orcid.org/0000-0003-1407-4361),E-mail:lishuangqin@swfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李双琴
汪仲毅
赵琬玥
陈龙清
胡慧贞

引用本文:

李双琴,汪仲毅,赵琬玥,陈龙清,胡慧贞. 基于代谢组学和转录组学挖掘荷叶生物碱合成途径关键基因[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 328-340.

Shuangqin LI,Zhongyi WANG,Wanyue ZHAO,Longqing CHEN,Huizhen HU. Mining key genes of alkaloid synthesis pathway in lotus leaves based on metabolomics and transcriptomics. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 328-340.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.04.291        https://www.zjujournals.com/agr/CN/Y2023/V49/I3/328

基因名称

Gene name

基因号

Gene ID

正向引物(5→3

Forward primer (5→3)

反向引物(5→3

Reverse primer (5→3)

NnCYP80GLOC104595105GATCGATTGCTTTCAGGCCGTTTCTCCTCTCTGGCGTGTG
Nn6OMTLOC104590845GGCGAAGAACGATATGGGCTGCCGACCAAGCTATCCTTGA
NnTYDCLOC104610815TGGCAAATAGCCCTCAGTCGCGGCACCACAATCTCAAACC
NnNCSLOC104609606GCGTTGGCACCATTCTATACGGCACGATTCAGCGTCTTTCTC
NnRAVLOC104603036TCTTCCCTTGCTTGACCGACAATTTAACCGGCGTCTCCGT
NnERFLOC104610490AGCTGGAGCAAACTAAGCGTTCTGCGTGCTGTTTCGGTAT
表1  qRT-PCR引物信息
图1  3个莲品种及其荷叶样品
图2  TKL、JWB和DZHL的生物碱相对含量短栅上不同小写字母表示在P<0.05水平差异有统计学意义。
图3  代谢物质量评估
图4  TKL、JWB和DZHL中差异代谢物聚类热图(A)、火山图(B)及维恩图(C)A.红色代表高含量,绿色代表低含量;C.圆圈里的数字代表差异代谢物数量。
图5  TKL、JWB和DZHL中差异代谢物的KEGG富集图(A)及其显著差异代谢物的生物碱相对含量(B)GDNM-BnTHIQ:3´-葡萄糖基-6,7-二羟基-N-甲基-苄基四氢异喹啉。短栅上不同小写字母表示不同品种间同一代谢物的生物碱相对含量在P<0.05水平差异有统计学意义。
图6  TKL、JWB和DZHL中差异基因维恩图(A)和聚类热图(B)A.圆圈里的数字代表差异代谢物数量;B.红色代表高表达量,绿色代表低表达量。
图7  异喹啉类生物碱生物合成途径基因表达水平示意图
图8  TKL、JWB和DZHL成熟荷叶中候选基因相对表达量短栅上不同小写字母分别表示不同品种候选基因的FPKM值(RNA-Seq)及其相对表达量(qRT-PCR)在P<0.05水平差异有统计学意义。
1 XUE J H, DONG W P, CHENG T, et al. Nelumbonaceae: systematic position and species diversification revealed by the complete chloroplast genome[J]. Journal of Systematics and Evolution, 2012, 50(6): 477-487. DOI: 10.1111/j.1759-6831.2012.00224.x
doi: 10.1111/j.1759-6831.2012.00224.x
2 黄博.中国荷叶资源及其生物活性研究[D].湖北,武汉:武汉大学,2011.
HUANG B. Studies on the resources and bioactivities of lotus (Nelumbo nucifera) leaf in China[D]. Wuhan, Hubei: Wuhan University, 2011. (in Chinese with English abstract)
3 王冰洁.中国莲文化研究[D].陕西,杨凌:西北农林科技大学,2015.
WANG B J. The research on Chinese lotus’ culture[D]. Yangling, Shaanxi: Northwest A&F University, 2015. (in Chinese with English abstract)
4 张行言,陈龙清.中国荷花新品种图志Ⅰ[M].北京:中国林业出版社,2011.
ZHANG X Y, CHEN L Q. Atlas Ⅰ of New Lotus Cultivars in China[M]. Beijing: China Forestry Publishing House, 2011. (in Chinese)
5 MUKHERJEE P K, MUKHERJEE D, MAJI A K, et al. The sacred lotus (Nelumbo nucifera): phytochemical and therapeutic profile[J]. Journal of Pharmacy & Pharmacology, 2009, 61(4): 407-422. DOI: 10.1211/jpp/61.04.0001
doi: 10.1211/jpp/61.04.0001
6 朱玲平.荷叶生物碱代谢路径关键基因的挖掘[D].湖北,武汉:中国科学院大学,2015.
ZHU L P. Identification of key genes involved in metabolic pathway of lotus leaf alkaloids[D]. Wuhan, Hubei: University of Chinese Academy of Sciences, 2015. (in Chinese with English abstract)
7 李梢.荷叶碱和荷叶提取物作为制备治疗萎缩性胃炎和/或阻断胃炎癌转化发生药物的应用:CN110393715A[P].2019-11-01.
LI S. Application of lotus leaf alkaloid and lotus leaf extract as drugs for treating atrophic gastritis and/or blocking the transformation of gastritis cancer: CN110393715A[P]. 2019-11-01. (in Chinese)
8 孙常磊,朱丽平,段朝辉,等.荷叶碱或含其的植物提取物的应用:CN102949299B[P].2013-03-06.
SUN C L, ZHU L P, DUAN C H, et al. Application of lotus leaf alkaloid or plant extract containing it: CN102949299B[P]. 2013-03-06. (in Chinese)
9 陈畅,谢永艳,黄丽萍.荷叶碱药理作用的研究进展[J].南京中医药大学学报,2021,37(4):619-624. DOI:10.14148/j.issn.1672-0482.2021.0619
CHEN C, XIE Y Y, HUANG L P. Advance of pharmaco-logical studies on nuciferine[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2021, 37(4): 619-624. (in Chinese with English abstract)
doi: 10.14148/j.issn.1672-0482.2021.0619
10 赵力.莲叶片生物碱合成基因的挖掘及功能鉴定[D].福建,福州:福建农林大学,2019.
ZHAO L. Mining and functional identification of alkaloid synthetic genes from lotus leaves[D]. Fuzhou, Fujian: Fujian Agriculture and Forestry University, 2019. (in Chinese with English abstract)
11 LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. DOI: 10.1186/s13059-014-0550-8
doi: 10.1186/s13059-014-0550-8
12 VARET H, BRILLET-GUÉGUEN L, COPPÉE J Y, et al. SARTools: a DESeq2- and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq Data[J]. PLoS ONE, 2016, 11(6): e0157022. DOI: 10.1371/journal.pone.0157022
doi: 10.1371/journal.pone.0157022
13 THÉVENOT E A, ROUX A, XU Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. Journal of Proteome Research, 2015, 14(8): 3322-3335. DOI: 10.1021/acs.jproteome.5b00354
doi: 10.1021/acs.jproteome.5b00354
14 PATRA B, SCHLUTTENHOFER C, WU Y M, et al. Transcriptional regulation of secondary metabolite biosynthesis in plants[J]. Biochimica et Biophysica Acta, 2013, 1829(11): 1236-1247. DOI: 10.1016/j.bbagrm.2013.09.006
doi: 10.1016/j.bbagrm.2013.09.006
15 ZHOU M L, MEMELINK J. Jasmonate-responsive trans-cription factors regulating plant secondary metabolism[J]. Biotechnology Advances, 2016, 34(4): 441-449. DOI: 10.1016/j.biotechadv.2016.02.004
doi: 10.1016/j.biotechadv.2016.02.004
16 DENG X B, ZHU L P, FAN T, et al. Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1130-1136. DOI: 10.1021/acs.jafc.5b06099
doi: 10.1021/acs.jafc.5b06099
17 BOKE H, OZHUNER E, TURKTAS M, et al. Regulation of the alkaloid biosynthesis by miRNA in opium poppy[J]. Plant Biotechnology Journal, 2015, 13(3): 409-420. DOI: 10.1111/pbi.12346
doi: 10.1111/pbi.12346
18 WINZER T, KERN M, KING A J, et al. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein[J]. Science, 2015, 349(6245): 309-312. DOI: 10.1126/science.aab1852
doi: 10.1126/science.aab1852
19 OTANI M, SHITAN N, SAKAI K, et al. Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica [J]. Plant Physiology, 2005, 138(4): 1939-1946. DOI: 10.1104/pp.105.064352
doi: 10.1104/pp.105.064352
20 YAMADA Y, MOTOMURA Y, SATO F. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells[J]. Plant and Cell Physiology, 2015, 56(5): 1019-1030. DOI: 10.1093/pcp/pcv027
doi: 10.1093/pcp/pcv027
21 TORRES M A, HOFFARTH E, EUGENIO L, et al. Structural and functional studies of pavine N-methyltransferase from Thalictrum flavum reveal novel insights into substrate recognition and catalytic mechanism[J]. Journal of Biological Chemistry, 2016, 291(45): 23403-23415. DOI: 10.1074/jbc.M116.747261
doi: 10.1074/jbc.M116.747261
22 DU H, YOU J S, ZHAO X, et al. Antiobesity and hypolipi-demic effects of lotus leaf hot water extract with taurine in rats fed a high fat diet[J]. Journal of Biomedical Science, 2010, 17(Suppl. 1): S42. DOI: 10.1186/1423-0127-17-S1-S42
doi: 10.1186/1423-0127-17-S1-S42
23 范婷婷,法鲁克,方芳,等.荷叶总生物碱降脂减肥作用的体内外试验[J].浙江大学学报(农业与生命科学版),2013,39(2):141-148. DOI:10.3785/j.issn.1088-9209.2012.11.064
FAN T T, FA L K, FANG F, et al. Effect of total alkaloids from lotus leaves on body mass and lipid regulation in vivo and in vitro [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 141-148. (in Chinese with English abstract)
doi: 10.3785/j.issn.1088-9209.2012.11.064
24 JUNG M A, LEE S Y, HAN S H, et al. Hypocholesterolemic effects of Curcuma longa L. with Nelumbo nucifera leaf in an in vitro model and a high cholesterol diet-induced hyper-cholesterolemic mouse mode[J]. Animal Cells Systems, 2015, 19(2): 133-143. DOI: 10.1080/19768354.2014.992953
doi: 10.1080/19768354.2014.992953
25 PAULI H H, KUTCHAN T M. Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3 ´ -hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis[J]. The Plant Journal, 1998, 13(6): 793-801.
26 GURKOK T, OZHUNER E, PARMAKSIZ I, et al. Functional characterization of 4 ´ OMT and 7OMT genes in BIA biosyn-thesis[J]. Frontiers in Plant Science, 2016, 7: 98. DOI: 10.3389/fpls.2016.00098
doi: 10.3389/fpls.2016.00098
27 YANG M, ZHU L P, LI L, et al. Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in lotus (Nelumbo nucifera)[J]. Frontiers in Plant Science, 2017, 8: 80. DOI: 10.3389/fpls.2017.00080
doi: 10.3389/fpls.2017.00080
28 VIMOLMANGKANG S, DENG X B, OWITI A, et al. Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants[J]. Scientific Reports, 2016, 6: 26323. DOI: 10.1038/srep26323
doi: 10.1038/srep26323
29 DENG X B, ZHAO L, FANG T, et al. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus[J]. Horticulture Research, 2018, 5: 29. DOI: 10.1038/s41438-018-0035-0
doi: 10.1038/s41438-018-0035-0
30 SHOJI T, KAJIKAWA M, HASHIMOT T. Clustered trans-cription factor genes regulate nicotine biosynthesis in tobacco[J]. The Plant Cell, 2010, 22(10): 3390-3409. DOI: 10.1105/tpc.110.078543
doi: 10.1105/tpc.110.078543
31 VAN MOERKERCKE A, STEENSMA P, GARIBOLDI I, et al. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus [J]. The Plant Journal, 2016, 88(1): 3-12. DOI: 10.1111/tpj.13230
doi: 10.1111/tpj.13230
32 KATO N, DUBOUZET E, KOKABU Y, et al. Identification of a WRKY protein as a transcriptional regulator of benzy-lisoquinoline alkaloid biosynthesis in Coptis japonica [J]. Plant and Cell Physiology, 2007, 48(1): 8-18. DOI: 10.1093/pcp/pcl041
doi: 10.1093/pcp/pcl041
[1] 白圣懿,王晓敏,刘文娟,程国新,郭猛,姚文孔,高艳明,李建设. 不同激素处理下番茄实时荧光定量聚合酶链反应内参基因的筛选[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 31-44.
[2] 孙佳琦,王晨,王光华,任应党,祝增荣,白耀宇. 再生稻田拟环纹豹蛛与青翅蚁形隐翅甲间的集团内捕食及其影响因素[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 807-822.
[3] 祁博文,郭梦兰,卢合均,梅欢,赵汀,方磊. 2个四倍体栽培棉种冷胁迫响应基因的鉴定与比较分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 10-20.
[4] 孟金柱,吴震洋,安清明,赵园园. 黔北黑猪肌内脂肪沉积相关基因的筛选[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 797-804.
[5] 郭宇燕,张璐,赵心雨,胡东维,梁五生. 照光抑制稻曲病菌菌丝生长的转录组分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 571-581.
[6] 郑嫩珠, 李丽, 辛清武, 缪中纬, 朱志明, 刘凤辉, 吴俭飞, 卢立志. 内参基因对TYR、MITF和ASIP基因在白绒乌骨鸡各组织表达水平的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 732-740.
[7] 郑磊, 张静, 彭燕, 麻文建, 朱天辉. 实时荧光定量聚合酶链反应检测核桃根际土壤生防菌Bacillus amyloliquefaciens和Trametes versicolor的定殖[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 277-284.
[8] 黄玉吉1,2, 陈斌1*, 张传溪2*. 褐飞虱体内Himetobi P病毒的检测及组织定位[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 473-590.
[9] 张伟, 张君胜, 张尧, 王利红. 湖羊促性腺激素释放激素受体基因(GnRHR)在消化系统中的表达谱分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 387-392.