Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 91-101    DOI: 10.3785/j.issn.1008-973X.2020.01.011
Civil Engineering, Transportation Engineering     
Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation
Kang CHENG1,2,3(),Ri-qing XU1,2,*(),Cun-gang LIN4,5,Nuo DUAN3,6,Su-yang FENG1,2,Rong-zhu LIANG3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
3. Engineering Research Center of Rock and Soil Drilling and Excavation and Protection of Ministry of Education, China University of Geosciences, Wuhan 430074, China
4. Norwegian Geotechnical Institute, Oslo 0806, Norway
5. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
6. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
Download: HTML     PDF(1892KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new simplified analytic solution considering the actual state of ground displacement was proposed based on the virtual mirror technology in order to estimate the response of the existing single pile due to adjacent basement excavation. The virtual mirror technology was used, and the measured deformation of the basement maintenance structures provided easily by the in-situ monitoring technique was utilized. The analytic solution of the greenfield ground movement was developed based on the non-equivalence of the radial movement of the ground. Then the greenfield ground movement was imposed on the pile with the two-stage method by introducing the modified foundation reaction modulus to consider the depth effect of ground. The control differential equation of horizontal displacement of the pile based on Pasternak foundation was established. The feasibility and effectiveness of the proposed method was verified by comparison with three-dimensional finite element method analysis and the existed theoretical solution as well as field measured data. The parametric analysis show that increasing the coefficient of subgrade reaction and the bending stiffness of the pile can decrease the maximum horizontal displacement of the pile. When the pile is far from the foundation pit, the maximum horizontal displacement is essentially immune from the bending stiffness of the pile.



Key wordsvirtual mirror technology      radial movement of ground      non equivalence      two-stage method      foundation reaction modulus     
Received: 16 January 2019      Published: 05 January 2020
CLC:  TU 375  
Corresponding Authors: Ri-qing XU     E-mail: chengkang@zju.edu.cn;xurq@zju.edu.cn
Cite this article:

Kang CHENG,Ri-qing XU,Cun-gang LIN,Nuo DUAN,Su-yang FENG,Rong-zhu LIANG. Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 91-101.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.011     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/91


既有单桩在邻近基坑开挖下的水平向响应简化分析

为了探究既有单桩在邻近基坑开挖作用下的水平向响应规律,提出基于虚拟镜像技术的基坑开挖引起邻近单桩水平向响应解析解. 发挥基坑围护结构变形易于实测的优势,借鉴虚拟镜像技术,考虑土体位移的实际情况,修正土体的等量径向移动模式,推导出土体非等量径向移动模式下基坑开挖引起的坑外土体水平位移场. 基于Pasternak双参数地基,引入修正地基反力模量以考虑埋深效应,利用两阶段法,将土体水平自由位移场视为外荷载施加于邻近单桩,建立在邻近基坑开挖扰动下既有单桩的水平向位移控制方程. 与三维有限元数值模型、既有理论解及已发表案例的工程实测数据的对比,验证该方法的正确性及适用性. 参数分析表明:提高地基反力系数和单桩抗弯刚度有助于减小单桩最大水平位移;当桩与基坑间距较远时,单桩最大水平位移几乎不再受自身抗弯刚度的影响.


关键词: 虚拟镜像技术,  土体径向移动,  非等量性,  两阶段法,  地基反力模量 
Fig.1 Model for equivalence of radial movement of surrounding soils[9]
Fig.2 Model for non-equivalence of radial movement of surrounding soils
Fig.3 Model of soil movements under uneven intrusion mode
Fig.4 Sketch of Cerrutti′s solution
Fig.5 Model of imbedded adjacent pile-soil interaction
Fig.6 Three-dimensional finite element model and mesh
土层 $E_{50}^{{\rm{ref}}}/{\rm{MPa} }$ $E_{\rm{oed}}^{\rm{ref} }/{\rm{MPa} }$ $E_{ {\rm{ur} } }^{\rm{ref}}/{\rm{MPa} }$ $G_0^{\rm{ref}}/{\rm{MPa} }$ γ0.7 Rf c′/kPa φ′/(°) t/m
粉质黏土 8 8 32 80 0.000 1 0.75 28 22 50
Tab.1 Physical and mechanics parameters of soil
Fig.7 Horizontal displacement comparison curves of pile
Fig.8 Calculation model and parameters of single pile under adjacent basement excavation
Fig.9 Horizontal displacement comparison curves of pile
Fig.10 Bending moment curves of pile
Fig.11 Horizontal displacement comparison curves of pile
Fig.12 Bending moment curves of pile
Fig.13 Effect of distance between pile and basement and coefficient of subgrade reaction on maximum horizontal displacement of single pile
Fig.14 Effect of distance between pile and foundation pit and flexural rigidity of pile on maximum horizontal displacement of single pile
[1]   FINNO R J, LAWRENCE S A, ALLAWH N F, et al Analysis of performance of pile groups adjacent to deep excavation[J]. Journal of Geotechnical Engineering, 1991, 117 (6): 934- 955
doi: 10.1061/(ASCE)0733-9410(1991)117:6(934)
[2]   KOK S T, HUAT B B K, NOORZAEI J, et al A case study of passive piles failure in open excavation[J]. The Journal of the Deep Foundations Institute, 2009, 3 (2): 49- 56
doi: 10.1179/dfi.2009.011
[3]   ONG D E L, LEUNG C F, CHOW Y K Behavior of pile groups subject to excavation-induced soil movement in very soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135 (10): 1462- 1474
doi: 10.1061/(ASCE)GT.1943-5606.0000095
[4]   LEUNG C F, ONG D E L, CHOW Y K Pile behaviour due to excavation-induced soil movement in clay. Ⅱ: collapsed wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (1): 45- 53
doi: 10.1061/(ASCE)1090-0241(2006)132:1(45)
[5]   ONG D E L, LEUNG C F, CHOW Y K Pile behavior due to excavation-induced soil movement in clay. I: stable wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (1): 36- 44
doi: 10.1061/(ASCE)1090-0241(2006)132:1(36)
[6]   GUO W D. A simplified approach for piles due to soil movement [C]//The 12th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. Cambridge: Verlag Gluckauf GMBH, 2003: 2215-2220.
[7]   MROUEH H, SHAHROUR I Three‐dimensional finite element analysis of the interaction between tunneling and pile foundations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 26 (3): 217- 230
[8]   ZHANG R, ZHENG J, PU H, et al Analysis of excavation-induced responses of loaded pile foundations considering unloading effect[J]. Tunneling and Underground Space Technology, 2011, 26 (2): 320- 335
doi: 10.1016/j.tust.2010.11.003
[9]   SAGASETA C Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37 (3): 301- 320
doi: 10.1680/geot.1987.37.3.301
[10]   XU K J, POULOS H G General elastic analysis of piles and pile groups[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24 (15): 1109- 1138
doi: 10.1002/1096-9853(20001225)24:15<1109::AID-NAG72>3.0.CO;2-N
[11]   张爱军, 莫海鸿, 李爱国, 等 基坑开挖对邻近单桩影响的两阶段分析方法[J]. 岩石力学与工程学报, 2013, 32 (Suppl.1): 2746- 2750
ZHANG Ai-jun, MO Hai-hong, LI Ai-guo, et al Two-stage analysis method for behavior of adjacent piles due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.1): 2746- 2750
[12]   杜金龙, 杨敏 基坑开挖与邻近单桩相互作用的弹塑性解[J]. 岩土工程学报, 2008, 30 (8): 1121- 1125
DU Jin-long, YANG Min Elastoplastic solution for excavation-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (8): 1121- 1125
doi: 10.3321/j.issn:1000-4548.2008.08.003
[13]   张治国, 赵其华, 徐晨, 等 基于影像源法的基坑开挖对邻近单桩影响简化分析[J]. 岩土力学, 2016, 37 (7): 2011- 2020
ZHANG Zhi-guo, ZHAO Qi-hua, XU Chen, et al Simplified analysis of adjacent single-pile response subjected to foundation pit excavation based on virtual image technique[J]. Rock and Soil Mechanics, 2016, 37 (7): 2011- 2020
[14]   梁荣柱, 夏唐代, 林存刚, 等 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报, 2015, 34 (3): 583- 593
LIANG Rong-zhu, XIA Tang-dai, LIN Cun-gang, et al Analysis of ground surface displacement and horizontal movement of deep soils induced by shield advancing[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (3): 583- 593
[15]   林存刚. 盾构掘进地面隆陷及潮汐作用江底盾构隧道性状研究 [D]. 杭州: 浙江大学, 2014.
LIN Cun-gang. Research on shield tunneling-induced ground surface heave and Subsidence and behavior of underwater shield-driven tunnels subject to tidal bores [D]. Hangzhou: Zhejiang University, 2014.
[16]   林存刚, 夏唐代, 梁荣柱, 等 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014, 36 (8): 1438- 1446
LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, et al Estimation of shield tunneling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1438- 1446
doi: 10.11779/CJGE201408009
[17]   张陈蓉, 黄茂松 基坑开挖引起的邻近建筑物单桩变形受力响应[J]. 岩土工程学报, 2012, 34 (Suppl.1): 564- 571
ZHANG Chen-rong, HUANG Mao-song Behavior of pile foundation due to excavation-induced lateral soil movement[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Suppl.1): 564- 571
[18]   张治国, 徐晨, 宫剑飞 隧道开挖对邻近单桩变形及承载能力影响的弹塑性解答[J]. 岩石力学与工程学报, 2017, 36 (1): 208- 222
ZHANG Zhi-guo, XU Chen, GONG Jian-fei, et al An elasto-plastic solution of pile deflection and pile load capacity due to adjacent tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (1): 208- 222
[19]   俞剑, 张陈蓉, 黄茂松 被动状态下地埋管线的地基模量[J]. 岩石力学与工程学报, 2012, 31 (1): 123- 132
YU Jian, ZHANG Chen-rong, HUANG Mao-song The subgrade modulus of underground pipelines subjected to soil movements[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (1): 123- 132
doi: 10.3969/j.issn.1000-6915.2012.01.015
[20]   KACHANOV M, SHAFIRO B, TSUKROV I. Handbook of elasticity solutions [M]. Dordrecht: Kluwer, 2003.
[21]   KERR A D On the determination of foundation model parameters[J]. Journal of Geotechnical Engineering, 1985, 111 (11): 1334- 1340
doi: 10.1061/(ASCE)0733-9410(1985)111:11(1334)
[22]   VESIC A B Bending of beam resting on isotropic elastic solid[J]. Journal of Engineering Mechanics Division, ASCE, 1961, 87 (2): 35- 53
[23]   梁发云, 李彦初, 黄茂松 基于Pasternak双参数地基模型水平桩简化分析方法[J]. 岩土工程学报, 2013, 35 (Suppl.1): 300- 304
LIANG Fa-yun, LI Yan-chu, HUANG Mao-song Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (Suppl.1): 300- 304
[1] Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.
[2] Hong-wei YING,Kang CHNEG,Jian-lin YU,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Jian-she QIN,Chun-hui LOU. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 318-329.
[3] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[4] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[5] Kang CHENG,Ri-qing XU,Cun-gang LIN,Rong-zhu LIANG,Hua-feng SHAN,Ming ZHAO. Simplified method for predicting surrounding soil’s horizontal displacement caused by arbitrary deflection of retaining wall[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 899-908.
[6] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[7] Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.
[8] Nan-guo JIN,Jia-hao HE,Chuan-qing FU,Xian-yu JIN. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 483-490.
[9] Jiang-xing LONG,Wei-liang JIN,Jun ZHANG,Jiang-hong MAO,Lei CUI. Experimental study on fatigue properties of steel bars after electrochemical repair[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 64-72.
[10] Fei-bin YUAN,Wei-liang JIN,Jiang-hong MAO,Jin-quan WANG,Wei-jie FAN,Jin XIA. Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2317-2324.
[11] Bin LUO,Wei HUANG,Xiang MA,Bin LI,Wen-cai ZHOU,Shan-shan REN. Flexural behavior of sandwich composite panels with core material of expanded polystyrene thermal insulation motar[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2185-2196.
[12] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 904-913.
[13] WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 922-930.
[14] XIANG Yi-qiang, HE Chao-chao, QIU Zheng. Calculation of long-term slippage for externally prestressing steel-concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 739-744.
[15] JIN Wei liang, ZHOU Zheng dong, ZHANG Jun,MAO Jiang hong, CUI Lei, PAN Chong gen. Experimental research on fatigue properties of corroded steel bars based on dynamic piezomagnetism[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 225-230.