Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering and Energy Engineering     
Acoustic agglomeration experiments of monodispersed aerosol
ZHOU Dong, LUO Zhong yang, LU Meng shi, HE Ming chun, CHEN Hao, FANG Meng xiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1133KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
Taking monodispersed aerosols as particle sources, the influence of that with different particle sizes on optimal acoustic agglomeration parameters was investigated to figure out the relationship between optimal sound parameters and particle size distributions of different aerosols in acoustic agglomeration. Monodispersed DEHs (diethylhexylsebacate) aerosol was used as the particle source. The effect of particle size and sound frequency on the number concentration of monodispersed aerosol under different sound conditions was analyzed. A higher decrement rate of particle number concentration means a better effect of sound wave. It is found that when the sound frequency ranges from 1 000 to 2 200 Hz, the acoustic agglomeration of 2 μm particle is more effective than that of 0.2 μm and 0.5 μm. The optimum frequency for 2 μm particle is a bit lower.


Published: 06 March 2017
CLC:  X 51  
Cite this article:

ZHOU Dong, LUO Zhong yang, LU Meng shi, HE Ming chun, CHEN Hao, FANG Meng xiang. Acoustic agglomeration experiments of monodispersed aerosol. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 358-362.


单分散气溶胶的声波团聚实验

针对在声波团聚研究中最佳声波参数与气溶胶粒径分布情况之间的关系尚不明确的问题,提出采用单分散气溶胶作为颗粒源,研究不同粒径的单分散气溶胶对最佳声波团聚参数影响的方法.采用单分散癸二酸二异辛酯(DEHs)气溶胶作为颗粒源,研究在不同声场作用下,不同粒径、不同频率对单分散气溶胶数目浓度的影响.颗粒物数目浓度减少率越大,声波团聚的效果越好.结果表明,在选取的1 000~2 200 Hz频率段,大粒径的2 μm颗粒物声波团聚效果好于小粒径的0.2和0.5 μm的情况,而2 μm颗粒物较优的声波团聚频率略低于0.2和0.5 μm的颗粒物.

[1] 吴兑.近十年中国灰霾天气研究综述[J].环境科学学报.2012(02): 257-269.
WU Dui. Hazy weather research in China in the last decade: A review [J]. Acta Scientiae Circumstantiae, 2012, 32(2): 257-269.
[2] KIM OANH N T, UPADHYAY N, ZHUANG Y H, et al. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources [J]. Atmospheric

Environment, 2006, 40(18): 3367-3380.
[3] HEIDENREICH S, EBERT F. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases \[J\]. Chemical Engineering and Processing, 1995, 34(3): 235-244.
[4] 凡凤仙.外加条件作用下可吸入颗粒物长大机理研究[D].南京:东南大学, 2008.
FAN Feng xian. Mechanism study of particle growth with additional effects [D]. Nanjing: Southeast University. 2008.
[5] 赵兵.利用声波团聚增强燃烧源可吸入颗粒物脱除的研究[D].南京: 东南大学, 2008.
ZHAO Bing. Using acoustic agglomeration to enhance the removal efficiency of particles in combustion source. [D]. Nanjing: Southeast University. 2008.
[6] 陈厚涛.声波团聚增强燃烧源细颗粒物排放控制的研究[D].南京:东南大学, 2009.
CHEN Hou tao. The study of using acoustic agglomeration to enhance the control of fine particle emission [D]. Nanjing: Southeast University. 2009.
[7] PATEL S N. Low intensity (<155dB) acoustic agglomeration-bench-scale experiments [D]. Buffalo: State University of New York at Bffalo, 1981.
[8] 王洁.声波团聚及联合其他方法脱除燃煤飞灰细颗粒的研究[D].杭州:浙江大学, 2012.
WANG Jie. Study of combined acoustic agglomeration with other means to remove coal-fired fine particles [D]. Hangzhou: Zhejiang University. 2012.
[9] 张光学.燃煤飞灰气溶胶声波团聚的理论和实验研究[D].杭州:浙江大学, 2010.
ZHANG Guang xue. Experimental and theoretical studies on acoustic agglomeration of coal-fired fly ash [D]. Hangzhou: Zhejiang University. 2010.
[10] 赵磊.脉冲电晕放电烟气中细微颗粒物协同氮氧化物脱除研究[D].杭州: 浙江大学, 2013.
ZHAO Lei. Research on simultaneous removal of PM2.5and NOx from flue gas by pulsed corona discharge [D]. Hangzhou: Zhejiang University. 2013.
[11] 赵汶,刘勇,鲍静静,等.化学团聚促进燃煤细颗粒物脱除的试验研究[J].中国电机工程学报.2013(20): 52-58.
ZHAO Wen, LIU Yong, BAO Jing jing, et al. Experimental research on fine particles removal from flue gas by chemical agglomeration [J]. Proceedings of the CSEE, 2013(20): 52-58.
[12] 徐俊超.细颗粒核化凝结长大实验平台设计及特性研究[D].南京:东南大学, 2014.
XU Jun chao. Fine particle growth by nucleation and condensation experiment system design and characteristic research [D]. Nan jing: Southeast University.2014.
[13] 林潮,孙传尧,徐建民.强磁性粒子间磁团聚力的研究[J].矿冶.2000(01): 25-30.
LIN Chao, SUN Chuan yao, XU Jian min. Study on magnetic agglomeration force of ferromagnetic particles [J]. Mining and Metallurgy, 2000(01): 25-30.
[14] REETHOF G. Acoustic agglomeration of power-plant fly-ash for environmental and hot gas cleanup [J]. Journal of Vibration Acoustic Stress and Reliability in DesignTransactions of The ASME, 1988, 110(4):552-556.
[15] WANG J, LIU J, ZHANG G, et al. Orthogonal design process optimization and single factor analysis for bimodal acoustic agglomeration [J]. Powder Technology, 2011, 210(3):315-322.
[16] LIU J, ZHANG G, ZHOU J, et al. Experimental study of acoustic agglomeration of coalfired fly ash particles at low frequencies[J]. Powder Technology, 2009, 193(1): 20-25.
[17] RIERA-FRANCO DE SARABIA E, EIVIRA-SEGURA L, GONZ-LEZ-GóMEZ I, et al. Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts[J]. Ultrasonics, 2003, 41(4): 277-281.
[18] GONZ-LEZ I A, HOFFMANN T L, GALLEGO J A. Precise measurements of particle entrainment in a standing-wave acoustic filed between 20 and 3500Hz[J]. Journal of Aerosol Science, 2000, 31(12):1461-1468.
[19] LIU J, WANG J, ZHANG G, et al. Frequency comparative study of coal-fired fly ash acoustic agglomeration [J]. Journal of Environment Science, 2011, 23(11): 1845-1851.
[20] HOFFMANN T L, KOOPMANN G H. Visualization of acoustic particle interaction and agglomeration: Theory and experiments [J]. Journal of the Acoustical Society of America, 1996, 99(41): 2130-2141.

[1] Hao-lin WANG,Zhong-yang LUO,Ming-chun HE,Dan SHEN. Effect of gas composition on discharge characteristics of electrostatic precipitator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(12): 2336-2343.
[2] Yan-fei WEI,Rong ZHOU,Min-jie ZHOU,Xiang GAO. Pilot study on combined denitration of SNCR-SCR system in cement furnace[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(10): 1986-1992.
[3] Jun-ming WANG,Xing-ya ZHAO,Ling-hong CHEN,Li-xia HAN,Xiang GAO,Ke-fa CEN. Ammonia effect on optical properties of secondary organic aerosols[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(9): 1812-1818.
[4] Shu-xin LIU,Zhong-yang LUO,Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG. Process and characteristics of capture of particles by charged droplet and acoustic waves[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(7): 1282-1290.
[5] Kang-wei LI,Fang YING,Ling-hong CHEN,Xian-jue ZHENG,Li-xia HAN,Xue-cheng WU,Xiang GAO,Ke-fa CEN. Ambient VOCs characteristics and associated effects in urban Hangzhou[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(4): 671-683.
[6] Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(2): 228-233.
[7] Jun CHENG,Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN. Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(2): 214-219.
[8] NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping. Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 384-392.
[9] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 145-152.
[10] LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2303-2311.
[11] ZHU Yan qun, YANG Ye, HUANG Jian peng, LIN Fa wei, MA Qiang, XU Chao qun, WANG Zhi hua, CEN Ke fa. Removal of NOx by ozone oxidation from flue gas of 60000 m3/h carbon black drying furnace of rubber plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1865-1870.
[12] ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1516-1520.
[13] QIU Shan, CHEN Cong, DENG Feng xia, JI Ya wan, DING Xiao, MA Fang. Rhodamine B wastewater degradation by graphite graphite electro Fenton system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 704-713.
[14] ZHOU Bin, ZHOU Hao, WANG Jian yang, CEN Ke fa. characteristic of Shenhua coal ash blending with saw dust ash in O2/CO2 atmosphere[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 468-476.
[15] ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 312-319.