Taking monodispersed aerosols as particle sources, the influence of that with different particle sizes on optimal acoustic agglomeration parameters was investigated to figure out the relationship between optimal sound parameters and particle size distributions of different aerosols in acoustic agglomeration. Monodispersed DEHs (diethylhexylsebacate) aerosol was used as the particle source. The effect of particle size and sound frequency on the number concentration of monodispersed aerosol under different sound conditions was analyzed. A higher decrement rate of particle number concentration means a better effect of sound wave. It is found that when the sound frequency ranges from 1 000 to 2 200 Hz, the acoustic agglomeration of 2 μm particle is more effective than that of 0.2 μm and 0.5 μm. The optimum frequency for 2 μm particle is a bit lower.
ZHOU Dong, LUO Zhong yang, LU Meng shi, HE Ming chun, CHEN Hao, FANG Meng xiang. Acoustic agglomeration experiments of monodispersed aerosol. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 358-362.
[1] 吴兑.近十年中国灰霾天气研究综述[J].环境科学学报.2012(02): 257-269.
WU Dui. Hazy weather research in China in the last decade: A review [J]. Acta Scientiae Circumstantiae, 2012, 32(2): 257-269.
[2] KIM OANH N T, UPADHYAY N, ZHUANG Y H, et al. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources [J]. Atmospheric
Environment, 2006, 40(18): 3367-3380.
[3] HEIDENREICH S, EBERT F. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases \[J\]. Chemical Engineering and Processing, 1995, 34(3): 235-244.
[4] 凡凤仙.外加条件作用下可吸入颗粒物长大机理研究[D].南京:东南大学, 2008.
FAN Feng xian. Mechanism study of particle growth with additional effects [D]. Nanjing: Southeast University. 2008.
[5] 赵兵.利用声波团聚增强燃烧源可吸入颗粒物脱除的研究[D].南京: 东南大学, 2008.
ZHAO Bing. Using acoustic agglomeration to enhance the removal efficiency of particles in combustion source. [D]. Nanjing: Southeast University. 2008.
[6] 陈厚涛.声波团聚增强燃烧源细颗粒物排放控制的研究[D].南京:东南大学, 2009.
CHEN Hou tao. The study of using acoustic agglomeration to enhance the control of fine particle emission [D]. Nanjing: Southeast University. 2009.
[7] PATEL S N. Low intensity (<155dB) acoustic agglomeration-bench-scale experiments [D]. Buffalo: State University of New York at Bffalo, 1981.
[8] 王洁.声波团聚及联合其他方法脱除燃煤飞灰细颗粒的研究[D].杭州:浙江大学, 2012.
WANG Jie. Study of combined acoustic agglomeration with other means to remove coal-fired fine particles [D]. Hangzhou: Zhejiang University. 2012.
[9] 张光学.燃煤飞灰气溶胶声波团聚的理论和实验研究[D].杭州:浙江大学, 2010.
ZHANG Guang xue. Experimental and theoretical studies on acoustic agglomeration of coal-fired fly ash [D]. Hangzhou: Zhejiang University. 2010.
[10] 赵磊.脉冲电晕放电烟气中细微颗粒物协同氮氧化物脱除研究[D].杭州: 浙江大学, 2013.
ZHAO Lei. Research on simultaneous removal of PM2.5and NOx from flue gas by pulsed corona discharge [D]. Hangzhou: Zhejiang University. 2013.
[11] 赵汶,刘勇,鲍静静,等.化学团聚促进燃煤细颗粒物脱除的试验研究[J].中国电机工程学报.2013(20): 52-58.
ZHAO Wen, LIU Yong, BAO Jing jing, et al. Experimental research on fine particles removal from flue gas by chemical agglomeration [J]. Proceedings of the CSEE, 2013(20): 52-58.
[12] 徐俊超.细颗粒核化凝结长大实验平台设计及特性研究[D].南京:东南大学, 2014.
XU Jun chao. Fine particle growth by nucleation and condensation experiment system design and characteristic research [D]. Nan jing: Southeast University.2014.
[13] 林潮,孙传尧,徐建民.强磁性粒子间磁团聚力的研究[J].矿冶.2000(01): 25-30.
LIN Chao, SUN Chuan yao, XU Jian min. Study on magnetic agglomeration force of ferromagnetic particles [J]. Mining and Metallurgy, 2000(01): 25-30.
[14] REETHOF G. Acoustic agglomeration of power-plant fly-ash for environmental and hot gas cleanup [J]. Journal of Vibration Acoustic Stress and Reliability in DesignTransactions of The ASME, 1988, 110(4):552-556.
[15] WANG J, LIU J, ZHANG G, et al. Orthogonal design process optimization and single factor analysis for bimodal acoustic agglomeration [J]. Powder Technology, 2011, 210(3):315-322.
[16] LIU J, ZHANG G, ZHOU J, et al. Experimental study of acoustic agglomeration of coalfired fly ash particles at low frequencies[J]. Powder Technology, 2009, 193(1): 20-25.
[17] RIERA-FRANCO DE SARABIA E, EIVIRA-SEGURA L, GONZ-LEZ-GóMEZ I, et al. Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts[J]. Ultrasonics, 2003, 41(4): 277-281.
[18] GONZ-LEZ I A, HOFFMANN T L, GALLEGO J A. Precise measurements of particle entrainment in a standing-wave acoustic filed between 20 and 3500Hz[J]. Journal of Aerosol Science, 2000, 31(12):1461-1468.
[19] LIU J, WANG J, ZHANG G, et al. Frequency comparative study of coal-fired fly ash acoustic agglomeration [J]. Journal of Environment Science, 2011, 23(11): 1845-1851.
[20] HOFFMANN T L, KOOPMANN G H. Visualization of acoustic particle interaction and agglomeration: Theory and experiments [J]. Journal of the Acoustical Society of America, 1996, 99(41): 2130-2141.