Please wait a minute...
J4  2010, Vol. 44 Issue (4): 665-669    DOI: 10.3785/j.issn.1008-973X.2010.04.007
    
Useful clock skew scheduling based on particle swarm optimization
ZHENG Dandan, ZHANG Peiyong, LV Dongming, YAN Xiaolang
Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 To deal with the difficulties in optimal design for clock skew scheduling of SOC in very deep submicron integrated circuit, a novel useful clock skew scheduling based on particle swarm optimization (PSO) was presented to optimize circuit performance. This technique introduces useful skew in circuits and adopts adaptive PSO with linearly decreasing inertia weight to adjust the clock input delay of critical path. Global search is performed at useful clock skew that using worst negative slack as fitness function to find the optimal solution, consequently reduces the clock period and optimize the circuit performance. Compared with other existing graph based algorithms, the proposed technique can obtain better solution by optimizing the combinational path delays. The application to 32bit embedded CPU show that this algorithm is correct and effective.



Published: 14 May 2010
CLC:     
  TN402  
Cite this article:

ZHENG Dan-Dan, ZHANG Pei-Yong, LV Dong-Meng. Useful clock skew scheduling based on particle swarm optimization. J4, 2010, 44(4): 665-669.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.04.007     OR     http://www.zjujournals.com/eng/Y2010/V44/I4/665


基于粒子群优化算法的有用时钟偏差规划

针对超深亚微米集成电路SOC设计中时钟偏差优化设计的难题,提出一种基于粒子群优化(PSO)算法的有用时钟偏差规划方法.在电路中引入有用偏斜,通过惯性权重线性递减的自适应PSO算法对关键路径上时钟输入端的延时进行调整,并采用最差时间违反作为适应函数对有用时钟偏差进行全局搜索寻求最优解,从而减小电路的时钟周期,优化电路的时序性能.与现有的经典图论算法相比,该方法通过优化组合逻辑的延时,可以找到更优解.应用该算法对32位嵌入式CPU进行优化计算,实验结果证明了该方法的正确性和有效性.

[1] RABAEY J M, CHANDRAKASAN A, NIKOLIC B. Digital integrated circuits [M]. 2nd ed. New Jersey: PrenticeHall, 2003: 495502,672692.
[2] RESTLE P J, MCNAMARA T G, WEBBER D A, et al. A clock distribution network for microprocessors [J]. IEEE Journal of SolidState Circuits, 2001, 36(5): 792799.
[3] VENKATARAMAN G, JAYAKUMAR N, HU J, et al. Practical techniques to reduce skew and its variations in buffered clock networks [C]∥ Proceedings of 2005 IEEE/ACM International Conference on ComputerAided Design. San Jose: IEEE, 2005: 592596.
[4] WASON V, MURGAI R, WALKER W W. An efficient uncertainty and skewaware methodology for clock tree synthesis [C]∥ Proceedings of the 20th International Conference on VLSI Design, Held Jointly with 6th International Conference on Embedded System. Los Alamitos: IEEE, 2007: 271277.
[5] KOURTEV I S, FRIEDMAN E G. Timing optimization through clock skew scheduling [M]. Norwell: Kluwer, 2000: 9096.
[6] NAWALE V, CHEN T W. Optimal useful clock skew scheduling in the presence of variations using robust ILP formulations [C]∥ Proceedings of 2006 IEEE/ACM International Conference on ComputerAided Design. San Jose: ACM, 2006: 2732.
[7] FISHBURN J P. Clock skew optimization [J]. IEEE Transactions on Computers, 1990, 39(7): 945951.
[8] DEOKAR R B, SAPATNEKAR S S. A graphtheoretic approach to clock skew optimization [C]∥ Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). London: IEEE, 1994: 407410.
[9] BURNS S M. Performance analysis and optimization of asynchronous circuits [D]. Pasadena: California Institute of Technology, 1991.
[10] RAVINDRAN K, KUEHLMANN A, SENTOVICH E. Multidomain clock skew scheduling [C]∥ Proceedings of 21th International Conference on ComputerAided Design. Washington, D.C.: ACM, 2003: 801808.
[11] KENNEDY J, EBERHART R. Particle swarm optimization [C]∥ Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE, 1995: 19421948.
[12] SHI Y, EBERHART R. A modified particle swarm optimizer [C]∥ Proceedings of IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Anchorage: IEEE, 1998: 6973.
[13] HWANGCHERNG C, SHUHSIEN C. High performance sense amplifier circuit for low power SRAM applications [C]∥ Proceedings of the 2004 International Symposium on Circuits and Systems. Vancouver: IEEE, 2004: 741744.
[14] SUNDARAM S, ELAKKUMANAN P, SRIDHAR R. High speed robust current sense amplifier for nanoscale memories: a winner take all approach [C]∥ Proceedings of 19th International Conference on VLSI Design, Held Jointly with 5th International Conference on Embedded System and Design. Hyderabad: IEEE, 2006: 6.
[15] TAWDROSS P, KONIG A. Local parameters particle swarm optimization [C]∥ Proceedings of 6th International Conference on Hybrid Intelligent Systems. Auckland: IEEE, 2006: 5255.
[16] ZIELINSKI K, LAUR R. Adaptive parameter setting for a multiobjective particle swarm optimization algorithm [C]∥ Proceedings of IEEE Congress on Evolutionary Computation. Canberra: IEEE, 2007: 30193026.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[3] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[4] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[5] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[10] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.