Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Development status of space cryogenic technology at liquid helium temperature in Japan
GAN Zhi hua1,2, TAO Xuan1,2, LIU Dong li1,2, SUN Xiao1,2, YAN Chun jie3
1. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China; 2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China; 3. State Key Laboratory of Vacuum Cryogenic Technology and Physics, Institute of Lanzhou Physics, Lanzhou 730000, China
Download:   PDF(5826KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
The development history of cryogenic system at liquid helium temperature utilized in Japan space detector was introduced. There are three stages: superfluid helium dewar (wet system), superfluid helium dewar cooled by Stirling cooler (system of both dry and wet), Joule Thomson cooler cooled by Stirling cooler (dry system). The performance and reliability of coolers steadily improves with continually improvement. Japan depends on a series of space missions, orients the direction of following projects using the early experiences, and makes progresses when solving problems, which is instructive for our country when developing related technology.


Published: 29 October 2015
CLC:  TK 1  
Cite this article:

GAN Zhi hua, TAO Xuan, LIU Dong li, SUN Xiao, YAN Chun jie. Development status of space cryogenic technology at liquid helium temperature in Japan. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1821-1835.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.10.001     OR     http://www.zjujournals.com/eng/Y2015/V49/I10/1821


日本空间液氦温区低温技术的发展现状

介绍日本空间探测器中液氦温区低温技术的发展历程,大致可以分成3个阶段:超流氦杜瓦(湿法)、斯特林制冷机冷却超流氦杜瓦(半干半湿
法)以及斯特林制冷机预冷J T(Joule Thomson)制冷机(干法).通过不断改进,制冷机的性能和可靠性稳步提高.日本依托一系列空间项目,用早期
项目的经验为后续计划确定方向,在解决问题的过程中进步,可以为我国开发相关技术提供参考.
[1] COLLAUDIN B, RANDO N. Cryogenics in space: a review of the missions and of the technologies [J]. Cryogenics, 2000, 40(12): 797-819.
[2] 甘智华,王博,刘东立,等.空间液氦温区机械式制冷技术发展现状及趋势[J].浙江大学学报:工学版,2012,46(12): 21602177.GAN Zhi hua, WANG Bo, LIU Dong li, et al. Status and development trends of space mechanical refrigeration system at liquid helium temperature [J]. Journal of Zhejiang University: Engineering Science, 2012,46(12):2160-2177.
[3] 刘东立,吴镁,汪伟伟,等.詹姆斯·韦伯太空望远镜低温制冷系统的发展历程[J].低温工程, 2013(06): 5662.LIU Dong li, WU Mei, WANG Wei wei, et al. Development of cryogenic system for James Webb space telescope [J]. Cryogenics (In Chinese), 2013(06): 56-62.
[4] WANG B, GAN Z. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications [J]. Progress in Aerospace Sciences, 2013, 61: 43-70.
[5] 张楷浩,邱利民,甘智华,等.制冷机传导冷却的超导磁体冷却系统研究进展[J].浙江大学学报:工学版,2012,46(7): 12131226.ZHANG Kai hao, QIU Li min, GAN Zhi hua, et al. Advance in cryogenic system of cryocooled superconducting magnet [J]. Journal of Zhejiang University: Engineering Science, 2012,46(7): 1213-1226.
[6] RADEBAUGH R. Cryocoolers: the state of the art and recent developments [J]. Journal of Physics: Condensed Matter, 2009, 21(16): 164-219.
[7] MATSUMOTO T, MURAKAMI H. Infrared telescope in space (IRTS) mission [C]∥ Proceedings of SPIE. Denver: SPIE, 1996, 2817: 238-247.
[8] MURAKAMI H, FREUND M M, GANGA K, et al. The IRTS (infrared telescope in space) mission [J]. Publications of the Astronomical Society of Japan, 1996, 48(5): L41-L46.
[9] URBACH A, MASON P. IRAS cryogenic system flight performance report [C]∥Advances in Cryogenic Engineering. New York: AIP, 1984, 29: 651-658.
[10] MURAKAMI M, OKUDA H, MATSUMOTO T, et al. Design of cryogenic system for IRTS [J]. Cryogenics, 1989, 29(5): 553-558.
[11] INOUE H, KUNIEDA H, MITSUDA K. Japanese future space missions for high energy astrophysics astro E2 and beyond [C]∥8th Asian Pacific Regional Meeting, Volume II. Tokyo, Japan: Astronomical Society of the Japan, 2002, 1: 11-12.
[12] VOLZ S M, MITSUDA K, INOUE H, et al. The X ray spectrometer (XRS): a multi stage cryogenicinstrument for the Astro E X ray astrophysics mission [J]. Cryogenics, 1996, 36(10): 763-771.
[13] KELLEY R L, MITSUDA K, ALLEN C A, et al. The Suzaku high resolution X ray spectrometer [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.1): S77-S112.
[14] NARASAKI K, TSUNEMATSU S, KANAO K, et al. Development of single stage Stirling cooler for space use [C]∥ Advances in Cryogenic Engineering. Keystone, USA: AIP, 2006, 823(1): 1505-1512.
[15] MITSUDA K, BAUTZ M, INOUE H, et al. The X ray observatory Suzaku [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.1): S1-S7.
[16] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Lifetime test and heritage on orbit of coolers for space use [J]. Cryogenics, 2012, 52(4): 188-195.
[17] MURAKAMI H. Japanese infrared survey missionIRIS (ASTRO F) [C]∥ Proceedings of SPIE. Kona, USA: SPIE, 1998, 3356: 471-477.
[18] MURAKAMI H, BABA H, BARTHEL P, et al. The infrared astronomical mission AKARI [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.2): S369-S376.
[19] HIRABAYASHI M, NARASAKI K, TSUNEMATSU S, et al. Thermal design and its on orbit performance of the AKARI cryostat [J]. Cryogenics, 2008,48(5/6): 189-197.
[20] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Development of two stage Stirling cooler for ASTRO F [C]∥ Advances in Cryogenic Engineering. Anchorage, USA: AIP, 2004, 710(1): 1428-1435.
[21] TAKAO NAKAGAWA K E M H. Flight performance of the AKARI cryogenic system [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.2): S377-S387.
[22] INATANI J, OZEKI H, SATOH R, et al. Submillimeter limb emission sounder JEM/ SMILES aboard the space station [C]∥ Proceedings of SPIE. Sendai, Japan: SPIE, 2000, 4152: 243-254.
[23] OTSUKA K, TSUNEMATSU S, OKABAYSHI A, et al. Test results after refurbish of cryogenic system for smiles [J]. Cryogenics, 2010, 50(9): 512-515.
[24] INATANI J, NARASAKI K, TSUNEMATSU S, et al. Mechanical cooler and cryostat for submillimeter SIS mixer receiver in space [C]∥ Proceedings of SPIE. Toulouse, France: SPIE, 2001, 4540: 197-208.
[25] SATO Y, SUGITA H, KOMATSU K, et al. Development of advanced two stage stirling cryocooler for next space missions [C]∥ Cryocoolers. Long Beach, USA: ICC Press, 2009, 15: 13-21.
[26] SHINOZAK K, SUGITA H, SATO Y, et al. Developments of 1 4 K class space mechanical coolers for new generation satellite missions in JAXA [C]∥ Cryocooler. Atlanta, USA: ICC Press, 2011, 16: 1-8.
[27] NARASAKI K, TSUNEMATSU S, YAJIMA S, et al. Development of cryogenic system for smiles [C]∥ Advances in Cryogenic Engineering. Anchorage, USA: AIP, 2004, 710(1): 1785-1796.
[28] SATO Y, SHINOZAKI K, SUGITA H, et al. Development of mechanical cryocoolers for the cooling system of the Soft X ray Spectrometer onboard Astro H [J]. Cryogenics, 2012, 52(4/5/6): 158-164.
[29] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Development of 1 K class mechanical cooler for SPICA [J]. Cryogenics, 2004, 44(6): 375-381.
[30] SUGITA H, NAKAGAWA T, MURAKAMI H, et al. Cryogenic infrared mission “JAXA/SPICA” with advanced cryocoolers [J]. Cryogenics, 2006, 46(2): 149-157.
[31] KIRKCONNELL C S, PRICE K D. Thermodynamic optimization of multi stage cryocoolers [C]∥Cryocoolers. Cambridge: Plenum Publishers, 2002, 12: 69-78.
[32] INATANI J, NOGUCHI T, SHI S C, et al. A submillimeter SIS receiver cooled by a compact Stirling JT refrigerator [C]∥8th International Symposium on Space Terahertz Technology. Cambridge: NRAOL, 1997, 1: 273-276.
[33] MANKINS J C. Technology readiness assessments: a retrospective [J]. Acta Astronautica, 2009, 65(9): 1216-1223.
[34] SATO Y, SAWADA K, SHINOZAKI K, et al. Development status of the mechanical cryocoolers for the soft X ray spectrometer on board Astro H [J]. Cryogenics, 2014, 64: 182-188.
[35] MITSUISHI I, EZOE Y, ISHIKAWA K, et al. He flow rate measurements on the engineering model for the Astro H Soft X ray Spectrometer dewar [J]. Cryogenics, 2014, 64: 189-193.
[36] ISHIKAWA K, EZOE Y, YAMAGUCHI H, et al. Porous plug and superfluid helium film flow suppressor for the soft X ray spectrometer onboard Astro H [J]. Cryogenics, 2010, 50(9): 507-511.
[37] SATO Y, SUGITA H, MITSUDA K, et al. Development of mechanical cryocoolers for Astro H/SXS [J]. Cryogenics, 2010, 50(9): 500-506.
[38] FUJIMOTO R, MITSUDA K, YAMASAKI N, et al. Cooling system for the soft X ray spectrometer onboard Astro H [J]. Cryogenics, 2010, 50(9): 488-493.
[39] SHINOZAKI K, MITSUDA K, YAMASAKI N Y, et al. Development of double stage ADR for future space missions [J]. Cryogenics, 2010, 50(9): 597-602.
[40] NAKAGAWA T, SPICA Working Group. SPICA: a mission optimized for mid and far infrared astronomy [C]∥The Promise of the Herschel Space Observatory. Toledo, Spain: ESA SP 460, 2001, 460: 475-478.
[41] JELLEMA W, NAYLOR A, VAN LOON D, et al. A large stroke cryogenic imaging FTS system for SPICA Safari [C]∥ Proceedings of SPIE. Montreal, Canada: SPIE, 2014, 9143: A1-A10.
[42] NAKAGAWA T, HAYASHI M, KAWADA M, et al. HII/L2 mission: future Japanese infrared astronomical mission [C]∥ Proceedings of SPIE. Kona, USA: SPIE, 1998, 3356: 462-470.
[43] SHINOZAKI K, SATO Y, SAWADA K, et al. Thermal study of payload module for the next generation infrared space telescope SPICA in risk mitigation phase [J]. Cryogenics, 2014, 64: 228-234.
[44] SWINYARD B, NAKAGAWA T, MATSUHA RA H, et al. The European contribution to the SPICA mission [C]∥ Proceedings of SPIE. Marseille, France: SPIE, 2008, 7010: I1-I8.
[45] SWINYARD B, NAKAGAWA T. The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA [J]. Experimental Astronomy, 2009, 23(1): 193-219.
[46] MATSUHARA H, NAKAGAWA T, KAWAKATSU Y, et al. Cooled scientific instrument assembly onboard SPICA [C]∥ Proceedings of SPIE. Amsterdam, Netherland: SPIE, 2012, 8442: U1-U11.
[47] ROELFSEMA P, GIARD M, NAJARRO F, et al. The SAFARI imaging spectrometer for the SPICA space observatory [C]∥ Proceedings of SPIE. Amsterdam, Netherland: SPIE, 2012, 8442: R1-R15.
[48] DUBAND L, DUVAL J M, LUCHIER N, et al. SPICA sub Kelvin cryogenic chains [J]. Cryogenics, 2012, 52(4): 145-151.
[49] SUGITA H, SATO Y, NAKAGAWA T, et al. Cryogenic system design of the next generation infrared space telescope SPICA [J].Cryogenics, 2010, 50(9): 566-571.
[50] SUGITA H, SATO Y, NAKAGAWA T, et al. Cryogenic system for the infrared space telescope SPICA [C]∥ Proceedings of SPIE. Marseille, France: SPIE, 2008, 7010: 1-9.
[51] GAN Z, WANG L, ZHAO S, et al. Acoustic impedance characteristics of linear compressors [J]. Journal of Zhejiang University: Science A, 2013, 14(7):494-503.
[52] 甘智华,王龙一,周文杰,等.直线臂板弹簧支撑的动圈式线性压缩机[J].工程热物理学报, 2013, 34(9): 16111614.GAN Zhi hua, WANG Long yi, ZHOU Wen jie, et al. A moving coil linear compressor with triangle flexure bearing [J]. Journal of Engineering Thermodynamics, 2013, 34(9): 1611-1614.
[53] SATO Y, SUGITA H, SHINOZAKI K, et al. Conceptual design of a cryogenic system for the next generation infrared space telescope SPICA [C]∥ Proceedings of SPIE. San Diego: SPIE, 2010, 7731: G1-G10.
[54] SUGITA H, SATO Y, NAKAGAWA T, et al. Development of mechanical cryocoolers for the Japanese IR space telescope SPICA [J]. Cryogenics, 2008,48(5): 258-266.
[55] 吴昌聚,徐秀琴.皮星1号A卫星(ZDPS 1A)被动热控制技术[J].浙江大学学报:工学版,2013(8): 14501456.WU Chang ju, XU Xiu qin. Passive thermal control technology of ZDPS 1A satellite [J]. Journal of Zhejiang University: Engineering Science, 2013(8):1450-1456.
[1] HONG Ying-jie, WANG Gen-juan, WANG Ming-xiao, WANG Wei-hao, DENG Kai. System based on Cassegrain optical principle applicable to measure chemiluminescence in flame[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 1044-1050.
[2] LI Hua-shan, WANG Han-zhi, WANG Ling-bao, WANG Xian-long, BU Xian-biao. Influence of solution heat exchangers on double absorption heat transformer (DAHT)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 471-477.
[3] HUANG Tiao, YANG Wei juan, ZHOU Jun hu, WANG Zhi hua, LIU Jian zhong, CEN Ke fa. Experimental study of premixed n-heptane/air catalytic combustion characteristics in micro-cylindrical tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2058-2063.
[4] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[5] TIAN Fu you,HUANG Lian feng,FAN Li wu,YU Zi tao,HU Ya cai. Experimental study on pressure drop of packed beds with binary sintered ore particle mixtures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2077-2086.
[6] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.
[7] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.
[8] WU Jiang hong, XUE Zhi qiang, JIN Peng, LI Hui xi. Temperature maldistribution in micro-channel heat exchanger applied to electrical vehicle’s heat pump air conditioning[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1537-1544.
[9] LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang.
Experimental investigation on electroacoustic conversion characteristic of linear compressor
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1529-1536.
[10] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[11] XU Huan xiang, YU Xiao li, WANG Lei, FAN Zhi peng, DOU Wen bo, WEI Wei, LI Dao fei. Compressed-air hybrid engine for exhaust energy recovery based on medium mixing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1353-1359.
[12] XIA Yu,QIU Xing qi,HUI Yuan yuan. Heat transfer in opening system with participating mediums[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1367-1372.
[13] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[14] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[15] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.