Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy Engineering and Environmental Engineering     
System based on Cassegrain optical principle applicable to measure chemiluminescence in flame
HONG Ying-jie, WANG Gen-juan, WANG Ming-xiao, WANG Wei-hao, DENG Kai
Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Download:   PDF(1830KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  A non-contact system based on Cassegrain optical principle was developed in order to expend the test method of radical species in flames. The system can detect chemiluminescence of local combustion reactions and obtain continuous signals. It is very suitable to acquire dynamic signals on a point. The effective light-collection volume was experimentally investigated by sending visible light through the device in the reverse direction. The effective light-collection volume’s diameter is only 0.382 mm and its length is 1.628 mm. OH-radical and CH-radical chemiluminescence in CH4/Air premixed flame were monitored in order to demonstrate the performance of the system. The experimental results show that the system has high spatial resolution and is practicable in the study of flame.

Published: 01 May 2017
CLC:  TK 16  
Cite this article:

HONG Ying-jie, WANG Gen-juan, WANG Ming-xiao, WANG Wei-hao, DENG Kai. System based on Cassegrain optical principle applicable to measure chemiluminescence in flame. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 1044-1050.


基于卡塞格林原理的火焰自由基测量系统

为了拓展火焰自由基荧光强度的测试方法,基于卡塞格林光学原理设计火焰非接触式定点测量系统,该系统可以实现对火焰自由基荧光强度的三维局部定点测量,具有定点聚焦及动态信号采集的功能.利用逆光路原理对自行设计的卡塞格林光线定点采集装置的聚焦功能进行验证,实验结果表明,该装置可以采集直径为0.382 mm,长为1.628 mm区域内的光线,具有三维高空间分辨率.基于甲烷部分预混火焰的OH基、CH基的光强随半径方向的分布数据分析,证明卡塞格林光线定点采集装置在火焰自由基荧光强度中定点测量的有效性与高空间分辨率特性.

参考文献(References):
[1] 宋旭东,郭庆华,张婷,等.甲烷同轴射流扩散火焰中自由基的辐射特性[J].中国电机工程学报,2013,33(35): 50-57.
SONG Xu-dong,GUO Qing-hua,ZHANG Ting, et al. Radiation characteristics of radicals in methane co-flowing jet diffusion flame [J]. Journal of Chinese Electrical Engineering Science, 2013, 33(35): 50-57.
[2] MIGLIORINI F, MAFFI S, IULIIS SD, et al. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras [J]. Measurement Science and Technology, 2014, 25(5): 1009-1016.
[3] 邓凯,李华,杨臧健,等.基于红外和纹影技术研究声作用下火焰锋面运动及热量演化[J].实验流体力学,2016, 30(6): 26-31.
DENG KAI, LI HUA, YANG ZJ, et al. Investigation of heat transfer and flame dynamics under acoustic excitation based on infrared and shadow method [J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):26-31.
[4] BRANCH MC, SADEQI ME, ALFARAYEDHI AA. Measurements of the structure of laminar, premixed flames of CH4/NO2/O2 and CH2O/NO2/O2 mixtures [J]. Combustion and Flame, 1991, 83(3/4): 228-239.
[5] HULT J, GASHI S, CHAKRABOTRY N, et al. Measurement of flame surface density for turbulent premixed flames using PLIF and DNS [J]. Proceedings of the Combustion Institute, 2007, 31(1): 1319-1326.
[6] TANAHASHI M,MURAKAMI S,CHOI GM,et al. Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames [J]. Proceeding of Combustion Institute,2005,30(1): 1665-1672.
[7] LEE SY, SEO S, BRODA JC, et al. An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor [J]. Proceedings of the Combustion Institute, 2000, 28(1): 775-782.
[8] AKAMATSU F, WAKABAYASHI T, TSUSHIMA S, et al. The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion field [J]. Measurement Science & Technology, 1999, 10(12):1240-1246.
[9] 汪亮.燃烧实验诊断学[M].北京:国防工业出版社,2011: 7.
[10] KOJIMA J, IKEDA Y, NAKAJIMA T. Measuring local OH to analyze flame front movement in a turbulent premixed flame [J]. American Institute of Aeronautics & Astronautics, 1999,1(1): 1-5.
[11] IKEDA Y, KOJIMA J, NAKAJIMA T, et al. Measurement of the local flame front structure of turbulent premixed flames by local chemiluminescence [J]. Proceedings of the Combustion Institute, 2000, 28(1):343-350.
[12] KOJIMA J, IKEDA Y, NAKAJIMA T. Spatially resolved measurement of OH, CH and C2 chemiluminescence in the reaction zone of laminar methane/air premixed flames [J]. Proceedings of the Combustion Institute, 2013, 28(2): 1757-1764.
[13] KIM B, KANEKO M, IKEDA Y, et al. Detailed spectral analysis of the process of HCCI combustion [J]. Proceedings of the Combustion Institute, 2002, 29(1): 671-677.
[14] IKEDA Y, KOJIMA J, HASHIMOTO H. Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1495-1501.
[15] BEDUNEAU JL, IKEDA Y. Application of laser ignition on laminar flame front investigation [J]. Experiments in Fluids, 2004, 36(1): 108-113.
[16] KOJIMA J, IKEDA Y, NAKAJIMA T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames [J]. Combustion and Flame, 2005, 140(1/2): 34-45.
[17] BEDUNEAU JL, KAWAHARA N, NAKAYAMA T, et al. Laser-induced radical generation and evolution to a self-sustaining flame [J]. Combustion and Flame, 2009, 156(3): 642-656.
[18] 张以谟.应用光学[M].第3版.北京:电子工业出版社,2008.
[19] HARDALUPAS Y, ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame [J]. Combustion and Flame, 2004, 139(3):188-207.
[20] ORAIN M. Experiments with gas and liquidfuelled flame[D]. London: University of London, 2001.
[21] YONG KJ, CHUNG HJ, YOUNG JC. Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4air flames [J]. Experimental Thermal and Fluid Science, 2006,30(7): 663-673.
[1] Kai ZHU,Yun-he WANG,Xue-wei QIN,Ya-dong HUANG,Qiang WANG,Ke WU. Effect of heating rate on asphalt combustion and gaseous products release characteristics[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(9): 1805-1811.
[2] Chen-ying ZHOU,Hao ZHOU,Yu-jian XING,Jia-kai ZHANG,Ming-xi ZHOU. Effect of additives on flow characteristics and sodium capture efficiency of high alkali coal ash slag[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(3): 623-630.
[3] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(10): 1898-1906.
[4] Shi-quan SHAN,Zhi-jun ZHOU,Jian-ping KUANG,Yu ZHANG,Ke-fa CEN. Lignite pyrolysis and oxy-fuel combustion characteristics under N2 and CO2 atmospheres[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(9): 1826-1834.
[5] Xiao-jie LI,Jian-meng CEN,Zhi-xiang XIA,Meng-xiang FANG,Tao WANG,Qin-hui WANG,Zhong-yang LUO. Pressurized pyrolysis characteristics of pine sawdust and coal[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(7): 1298-1305.
[6] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(6): 1139-1147.
[7] HUANG Tiao, YANG Wei juan, ZHOU Jun hu, WANG Zhi hua, LIU Jian zhong, CEN Ke fa. Experimental study of premixed n-heptane/air catalytic combustion characteristics in micro-cylindrical tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2058-2063.
[8] LI Jian, LIU Meng, DUAN Yu feng, XU Chao. Physicochemical analysis on hydrothermal upgrading of sewage sludge with lignite for solid fuel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 327-332.
[9] ZHOU Hao, SHI Wei, ZHU Guo dong. Solve CO inhibition of SNCR reaction by additive MMT[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2237-2243.
[10] HU You rui, LIU Yan, WANG Yang, LIU Jian zhong, ZHOU Jun hu, HU Wei, LI Hong wei. Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2403-2409.
[11] SHEN Zhong liang, DENG Kai, WANG Ming xiao, ZHONG Ying jie. Effects of acoustic frequency and amplitude on NOx of partially premixed flame[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2198-2204.
[12] HAN Zhi-jiang, ZHOU Jun-hu, YANG Wei-juan, YANG Cheng-hu. Experimental and model study on ignition of magnesium in steam[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(2): 267-272.
[13] YANG Wen-chuang, YANG Wei-juan, ZHOU Zhi-jun, YUAN Wei-dong,. Influence of secondary air angle on flow field in down-fired furnace
determined by cold-flow modeling experiment
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 139-145.
[14] LIANG Jun-hui, HUANG Qun-xing, FENG Yu-xiao, CHI Yong, YAN Jian-hua. Experimental analysis of the effect of oxygen concentration on
soot formation in ethylene diffusion flame
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1465-1471.
[15] ZHOU Zhi-jun, JIANG Xu-dong, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Ignition model and kinetic parameters analysis of oxygen-enriched
combustion of pulverized coal
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(3): 482-488.