Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (7): 1401-1410    DOI: 10.3785/j.issn.1008-973X.2020.07.019
    
Buckle and collapse mechanisms of deep-sea corrosion defect pipes under external pressure
Shun-feng GONG1(),Qin-gui XU1,Jia-wei ZHOU2,Xi-peng WANG1,Cheng-bin LIU1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
Download: HTML     PDF(2092KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The small-scale model experiments for steel tube specimens were conducted in a deep-sea hyperbaric chamber to measure the pressure and deformation configurations when the buckle and collapse occurred in order to analyze the buckle and collapse mechanisms of deep-sea corrosion defect pipes under external pressure. A three-dimensional numerical model of the pipe was established using the finite element software ABAQUS to simulate the quasi-static collapsing process of intact and corrosion defect pipes under external pressure. The pressure-change in diameter response curves and deformation configurations of steel pipes accorded well with the experimental results. The effects of pipe length, diameter-to-thickness ratio, initial ovality, steel grade, strain hardening characteristic of steel and geometric size of defects on the buckle and collapse of corrosion defect pipes were analyzed by using the developed numerical simulation method. Results show that initial ovality, geometric size of defects, and strain hardening characteristic of steel are the major factors affecting the normalized collapse pressure of deep-sea corrosion defect pipes, while the effects of pipe length, diameter-to-thickness ratio, and steel grade on the normalized collapse pressure are comparatively small.



Key wordspipe      corrosion defect      buckle and collapse      deep sea      external pressure     
Received: 24 June 2019      Published: 05 July 2020
CLC:  TE 973  
  TU 279  
Cite this article:

Shun-feng GONG,Qin-gui XU,Jia-wei ZHOU,Xi-peng WANG,Cheng-bin LIU. Buckle and collapse mechanisms of deep-sea corrosion defect pipes under external pressure. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1401-1410.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.07.019     OR     http://www.zjujournals.com/eng/Y2020/V54/I7/1401


外压作用下深海腐蚀缺陷管道的屈曲失稳机理

为了研究外压作用下深海腐蚀缺陷管道的屈曲失稳机理,通过深海压力舱小比例模型试验,测得钢管试件发生屈曲失稳时的压力和变形形态. 利用有限元软件ABAQUS建立管道的三维数值模型,模拟外压作用下完好无损管道和腐蚀缺陷管道的准静态屈曲失稳过程,得到钢管的压力-直径变化曲线和变形形态,与试验结果吻合良好. 采用建立的数值模拟方法,分析管道长度、径厚比、初始椭圆率、钢材等级、钢材应变硬化特性和缺陷几何尺寸等因素对腐蚀缺陷管道屈曲失稳的影响. 结果表明,初始椭圆率、缺陷几何尺寸、钢材应变硬化特性是深海腐蚀缺陷管道标准化后失稳压力的主要影响因素,管道长度、径厚比、钢材等级对标准化后失稳压力的影响相对较小.


关键词: 管道,  腐蚀缺陷,  屈曲失稳,  深海,  外压 
Fig.1 Schematic diagram of buckle and collapse test device
试件编号 l/mm c/(°) d/mm
TD1 89 18 1.35
TD2 89 18 1.8
TD3 89 18 2.25
TD4 89 18 2.7
TD5 89 18 3.15
TD6 44.5 18 2.7
TD7 133.5 18 2.7
TD8 178 18 2.7
TD9 89 9 2.7
TD10 89 27 2.7
TD11 89 36 2.7
Tab.1 Geometric sizes of test specimen corrosion defects
Fig.2 Test specimen with elliptical corrosion defect
Fig.3 Test equipment and initial and deformed configurations of test specimen
Fig.4 Material stress-strain curves of test specimens
Fig.5 Pressure-time curves of test specimens
试件编号 l/D c/(πD) d/t 失稳模式 pCOR/MPa ${p_{_{ {\rm{COR} } } }}/{\hat p_{_{ {\rm{CO} } } }}$
TD1 1.00 0.05 0.30 模式1 22.41 0.976
TD2 1.00 0.05 0.40 模式1 21.79 0.949
TD3 1.00 0.05 0.50 模式1 19.88 0.866
TD4 1.00 0.05 0.60 模式2 18.27 0.796
TD5 1.00 0.05 0.70 模式2 16.80 0.732
TD6 0.50 0.05 0.60 模式1 21.55 0.939
TD7 1.50 0.05 0.60 模式2 16.70 0.728
TD8 2.00 0.05 0.60 模式3 16.21 0.706
TD9 1.00 0.025 0.60 模式1 20.12 0.877
TD10 1.00 0.075 0.60 模式2 17.19 0.749
TD11 1.00 0.10 0.60 模式2 16.88 0.736
Tab.2 Experimental results of steel tube test specimens
Fig.6 Initial and deformed configurations of steel pipe test specimens
Fig.7 Finite element model of test specimens
Fig.8 Numerical simulated pressure-change in diameter response curves of test specimens
Fig.9 Initial and deformed configurations of test specimens
试件编号 pCOR/MPa $ {{\hat p}_{_{{\rm{COR}}}}}/{\rm{MPa}}$ e/%
TD1 22.41 22.30 ?0.49
TD2 21.79 21.59 ?0.92
TD3 19.88 20.33 2.26
TD4 18.27 18.67 2.18
TD5 16.80 17.01 1.25
TD6 21.55 21.27 1.30
TD7 16.70 17.19 2.93
TD8 16.21 16.33 0.74
TD9 20.12 19.93 ?0.94
TD10 17.19 17.79 3.49
TD11 16.88 16.90 0.12
Tab.3 Comparison of collapse pressure between simulation results and experimental values for test specimens
Fig.10 Comparison of deformed configurations between simulation and experimental results for test specimens
Fig.11 Collapse pressure vs. defect size for steel tube test specimens
Fig.12 Collapse pressure vs. defect depth for different pipe length
Fig.13 Collapse pressure vs. defect depth for different diameter-to-thickness ratio
Fig.14 Collapse pressure vs. defect depth for different initial ovality
Fig.15 Collapse pressure vs. defect depth for different steel grade
Fig.16 Collapse pressure vs. defect depth for different strain hardening property
Fig.17 Collapse pressure vs. defect length for different corrosion defect depth
Fig.18 Collapse pressure vs. defect depth for different corrosion defect length
Fig.19 Collapse pressure vs. defect depth for different corrosion defect width
[1]   YEH M K, KYRIAKIDES S Collapse of deepwater pipelines[J]. Journal of Energy Resources Technology, 1988, 110 (1): 1- 11
doi: 10.1115/1.3231355
[2]   PARK T D On the collapse of dented cylinders under external pressure[J]. International Journal of Mechanical Sciences, 1996, 38 (5): 557- 578
doi: 10.1016/0020-7403(95)00065-8
[3]   PAPADAKIS G Buckling of thick cylindrical shells under external pressure: a new analytical expression for the critical load and comparison with elasticity solutions[J]. International Journal of Solids and Structures, 2008, 45 (20): 5308- 5321
doi: 10.1016/j.ijsolstr.2008.05.027
[4]   LE GROGNEC P, CASARI P, CHOQUEUSE D Influence of residual stresses and geometric imperfections on the elastoplastic collapse of cylindrical tubes under external pressure[J]. Marine Structures, 2009, 22 (4): 836- 854
doi: 10.1016/j.marstruc.2009.09.003
[5]   龚顺风, 陈源, 金伟良, 等 高静水压力作用下深海油气管道的局部屈曲[J]. 浙江大学学报: 工学版, 2012, 46 (1): 14- 19
GONG Shun-feng, CHEN Yuan, JIN Wei-liang, et al Local buckling of deepwater oil-gas pipeline under high hydrostatic pressure[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (1): 14- 19
[6]   余建星, 卞雪航, 余杨, 等 深水海底管道全尺寸压溃试验及数值模拟[J]. 天津大学学报: 自然科学与工程技术版, 2012, 45 (2): 154- 159
YU Jian-xing, BIAN Xue-hang, YU Yang, et al Full-scale collapse test and numerical simulation of deepwater pipeline[J]. Journal of Tianjin University: Natural Science and Engineering Technology Edition, 2012, 45 (2): 154- 159
[7]   GONG S F, NI X Y, BAO S, et al Asymmetric collapse of offshore pipelines under external pressure[J]. Ships Offshore Structures, 2013, 8 (2): 176- 188
doi: 10.1080/17445302.2012.691273
[8]   HE T, DUAN M, AN C Prediction of the collapse pressure for thick-walled pipes under external pressure[J]. Applied Ocean Research, 2014, 47 (9): 199- 203
[9]   龚顺风, 胡勍 外压作用深海夹层管复合结构屈曲失稳分析[J]. 浙江大学学报: 工学版, 2014, 48 (9): 1624- 1631
GONG Shun-feng, HU Qing Buckling and collapse analyses of composite structures for deepwater sandwich pipes under external pressure[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1624- 1631
[10]   龚顺风, 王喜鹏, 李根, 等 层间黏结性能对夹层管屈曲传播的影响机理[J]. 浙江大学学报: 工学版, 2018, 52 (5): 0819- 0827
GONG Shun-feng, WANG Xi-peng, LI Gen, et al Influencing mechanisms of inter-layer adhesion behavior on buckle propagation of sandwich pipes[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (5): 0819- 0827
[11]   FATT M S H Elastic-plastic collapse of non-uniform cylindrical shells subjected to uniform external pressure[J]. Thin-Walled Structures, 1999, 35 (2): 117- 137
doi: 10.1016/S0263-8231(99)00021-X
[12]   XUE J, FATT M S H Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure[J]. Engineering Structures, 2002, 24 (8): 1027- 1034
doi: 10.1016/S0141-0296(02)00029-9
[13]   NETTO T A, FERRAZ U S, BOTTO A On the effect of corrosion defects on the collapse pressure of pipelines[J]. International Journal of Solids and Structures, 2007, 44 (22/23): 7597- 7614
doi: 10.1016/j.ijsolstr.2007.04.028
[14]   SAKAKIBARA N, KYRIAKIDES S, CORONA E Collapse of partially corroded or worn pipe under external pressure[J]. International Journal of Mechanical Sciences, 2008, 50 (12): 1586- 1597
doi: 10.1016/j.ijmecsci.2008.10.006
[15]   NETTO T A On the effect of narrow and long corrosion defects on the collapse pressure of pipelines[J]. Applied Ocean Research, 2009, 31 (2): 75- 81
doi: 10.1016/j.apor.2009.07.004
[16]   NETTO T A A simple procedure for the prediction of the collapse pressure of pipelines with narrow and long corrosion defects - correlation with new experimental data[J]. Applied Ocean Research, 2010, 32 (1): 132- 134
doi: 10.1016/j.apor.2009.12.007
[17]   YAN S T, SHEN X L, JIN Z J On instability failure of corroded rings under external hydrostatic pressure[J]. Engineering Failure Analysis, 2015, 55: 39- 54
[18]   YE H, YAN S T, JIN Z J Collapse of corroded pipelines under combined tension and external pressure[J]. Plos One, 2016, 11 (4): e0154314
doi: 10.1371/journal.pone.0154314
[19]   WANG H K, YU Y, YU J X, et al Effect of 3D random pitting defects on the collapse pressure of pipe — part I: experiment[J]. Thin-Walled Structures, 2018, 129: 512- 526
doi: 10.1016/j.tws.2018.04.015
[20]   WANG H K, YU Y, YU J X, et al Effect of 3D random pitting defects on the collapse pressure of pipe — part II: numerical analysis[J]. Thin-Walled Structures, 2018, 129: 527- 541
doi: 10.1016/j.tws.2018.04.014
[21]   金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1-2010 [S]. 北京: 中国标准出版社, 2010.
[22]   CHAKRABARTY J. Theory of plasticity [M]. Oxford: Elsevier, 2006.
[23]   LAM W F, MORLEY C T Arc-length method for passing limit points in structural calculation[J]. Journal of Structural Engineering, 1992, (1): 169- 185
[1] Bin ZHU,Nan JIANG,Chuan-bo ZHOU,Yong-sheng JIA,Xue-dong LUO,Ting-yao WU. Blasting seismic effect of buried cast iron pipeline in silty clay layer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 500-510.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Lin YANG,Jia-jun WANG. Risk transfer process in urban comprehensive corridor PPP project based on complex network model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1666-1676.
[4] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[5] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[6] Lie-jun JIN,Jian-ming ZHAN,Jun-hua CHEN,Tao WANG. Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 467-474.
[7] Li LONG,Shan-suo ZHENG,Yan ZHOU,Jin-chuan HE,Hong-li MENG,Yong-long CAI. Parallel study of seismic reliability analysis of water supply pipe network based on quasi-Monte Carlo method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 241-247.
[8] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[9] Da CHEN,Jing-qing LIU,Huan-yu CHEN,Ruo-wei WANG. Spatiotemporal change rules of water quality in cut-off water pipelines in district metering areas (DMA)[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1704-1710.
[10] Hai-ying WU,Hong-hu ZHU,Bao ZHU,He QI. Review of underground pipeline monitoring research based on distributed fiber optic sensing[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1057-1070.
[11] GONG Shun-feng, WANG Xi-peng, LI Gen, LIU Cheng-bin. Influencing mechanisms of inter-layer adhesion behavior on buckle propagation of sandwich pipes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 819-827.
[12] QU Yi-qing, HAO Zhi-yong, LI Heng, ZHENG Xu, ZHOU Nan. Acoustic performance of fabric pipe in intake system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1894-1900.
[13] SHENTU Hua-bin, LIU Jing-qing, YE-Ping, LI Hang-jia, XU Bing, PENG Hong-xi, WANG Lei. Radial distribution shifts of microbial communities in biofilms developed under stagnation condition in water supply pipes[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1317-1323.
[14] DU Yang, MA Li, ZHENG Jin-yang, ZHANG Fan, ZHANG An-da. Consequences prediction and analysis of pipe explosion considering fluid-structure interaction[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 429-435.
[15] XU Huan xiang, YU Xiao li, WANG Lei, FAN Zhi peng, DOU Wen bo, WEI Wei, LI Dao fei. Compressed-air hybrid engine for exhaust energy recovery based on medium mixing[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1353-1359.