Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (7): 1411-1417    DOI: 10.3785/j.issn.1008-973X.2020.07.020
    
Experimental study on improving effect of microorganism solidifying sand by ultrasonic
Zhi-ming LIU1,2(),Jie PENG1,2,*(),Jie LI1,2,En-run SONG3
1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
2. Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
3. Design and Research Institute of the Second Construction Limited Company, China Construction Eighth Bureau, Jinan 250014, China
Download: HTML     PDF(1239KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Orthogonal experiments of ultrasonic irradiation time (0-30 min) and ultrasonic power intensity (0-0.8 W/cm3) were conducted using ultrasound (20 kHz) in order to analyze ultrasonic effect on Sporosarcina pasteurii and its ability to induce calcium carbonate. Aqueous solution tests and sand column tests based on microbially induced carbonate precipitation were conducted using ultrasound-treated bacteria solution. Urease activity, OD600, distribution parameters of bacterial cells, amount of microbially induced CaCO3 and unconfined compressive strength of treated sand columns were measured. Effects of ultrasonic irradiation time, ultrasonic power intensity and ultrasonic energy intensity on CaCO3 amount were analyzed. Results show that ultrasonic irradiation can trigger physiological enhancement reaction of bacteria and improve the urease activity of bacterial liquid. Ultrasonic irradiation can effectively improve the ability of bacteria to induce CaCO3 with ultrasonic energy intensity of about 8 W·min/cm3. After bacterial solution was irradiated by ultrasound with the optimal irradiation strategy (ultrasonic power intensity of 0.4 W/cm3, treatment time of 20 minutes), CaCO3 amount in aqueous solution tests and sand column tests can be increased by 28.5% and 35.6% respectively. Unconfined compressive strength of MICP-treated sand sample was 1.25 MPa, which was increased by 91.6% than control samples.



Key wordsmicrobially induced carbonate precipitation (MICP)      ultrasound      urease activity      precipitation amount of CaCO3      irradiation time      ultrasonic energy intensity     
Received: 05 June 2019      Published: 05 July 2020
CLC:  TU 52  
Corresponding Authors: Jie PENG     E-mail: lzm@hhu.edu.cn;peng-jie@hhu.edu.cn
Cite this article:

Zhi-ming LIU,Jie PENG,Jie LI,En-run SONG. Experimental study on improving effect of microorganism solidifying sand by ultrasonic. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1411-1417.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.07.020     OR     http://www.zjujournals.com/eng/Y2020/V54/I7/1411


超声波提高微生物固化砂土效果的试验研究

为了研究超声波对巴氏生孢八叠球菌及其诱导碳酸钙沉积能力的影响,利用超声(20 kHz)开展超声辐照时间(0~30 min)和超声功率强度(0~0.8 W/cm3)的正交试验,用超声处理后的菌液进行水溶液试验和砂柱加固试验. 测定菌液脲酶活性、OD600、细菌颗粒分布参数、碳酸钙的产量和加固后砂柱无侧限抗压强度. 分析超声辐照时间、超声功率强度、超声能量强度对碳酸钙产量的影响. 结果表明,超声辐照能够引发细菌产生生理强化反应,提高菌液脲酶活性. 当超声能量强度约为8 W·min/cm3时,超声辐照能够有效地提高菌液诱导生成碳酸钙的能力. 经优化的辐照策略(超声功率强度为0.4 W/cm3,处理时间为20 min)进行超声辐照处理后,水溶液中和砂柱中的碳酸钙产量分别提高了28.5%和35.6%,加固后砂样无侧限抗压强度为1.25 MPa,较对照组提高了91.6%.


关键词: 微生物诱导碳酸钙沉积(MICP),  超声波,  脲酶活性,  碳酸钙产量,  辐照时间,  超声能量强度 
Fig.1 Particle size distribution of standard sand
PI/
(W·cm?3
t/min
0 10 20 30
0 O ? ? ?
0.2 ? A1 A2 A3
0.4 ? B1 B2 B3
0.6 ? C1 C2 C3
0.8 ? D1 D2 D3
Tab.1 Design of ultrasonic irradiation treatment tests
Fig.2 Particle distribution parameters of bacterial solution
Fig.3 Relationship between OD600 of bacterial solution and ultrasonic power intensity
Fig.4 Relationship between urease activity parameters and irradiation time
Fig.5 CaCO3 production in aqueous solution tests
EI/(W·min·cm?3 试验组别 EI/(W·min·cm?3 试验组别
2 A1 12 B3,C2
4 A2,B1 16 D2
6 A3,C1 18 C3
8 B2,D1 24 D3
Tab.2 Ultrasonic energy intensity of each test
Fig.6 Urease activity and OD600 varied with ultrasonic energy intensity
Fig.7 Relationship between CaCO3 content and ultrasonic energy intensity
Fig.8 Ultrasonic power intensity and proportion of bacterial activity of bacteaial liquid used in sand column treatment tests
Fig.9 Results of sand column tests
[1]   BOQUET E, BORONAT A, RAMOS-CORMENZANA A Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246: 527- 529
doi: 10.1038/246527a0
[2]   LIAN J, XU H, HE X, et al Biogrouting of hydraulic fill fine sands for reclamation projects[J]. Marine Georesources and Geotechnology, 2018, 37 (8): 1- 11
[3]   彭劼, 冯清鹏, 孙益成 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40 (6): 1048- 1055
PENG Jie, FENG Qing-peng, SUN Yi-cheng Experimental research on influence of temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (6): 1048- 1055
doi: 10.11779/CJGE201806010
[4]   CHENG L, SHAHIN M A Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation[J]. Canadian Geotechnical Journal, 2016, 53 (9): 1376- 1385
doi: 10.1139/cgj-2015-0635
[5]   MALEKI M, EBRAHIMI S, ASADZADEH F, et al Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil[J]. International Journal of Environmental Science and Technology, 2016, 13 (3): 937- 944
doi: 10.1007/s13762-015-0921-z
[6]   徐晶 基于微生物矿化沉积的混凝土裂缝修复研究进展[J]. 浙江大学学报: 工学版, 2012, 46 (11): 2020- 2027
XU Jing Research process of concrete crack remediation based on microbially mineral precipitation[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (11): 2020- 2027
[7]   DEJONG J T, SOGA K, KAVAZANJIAN E, et al Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63 (4): 287- 301
doi: 10.1680/geot.SIP13.P.017
[8]   VAN PAASSEN L, HARKES M P, VAN ZWIETEN G A, et al. Scale up of BioGrout: a biological ground reinforcement method [C] // 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, Egypt: IOS, 2009: 2328-2333.
[9]   GOROSPE C M, HAN S H, KIM S G, et al Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J]. Biotechnology and Bioprocess Engineering, 2013, 18 (5): 903- 908
doi: 10.1007/s12257-013-0030-0
[10]   KAUR G, DHAMI N K, GOYAL S, et al Utilization of carbon dioxide as an alternative to urea in biocementation[J]. Construction and Building Materials, 2016, 123: 527- 533
doi: 10.1016/j.conbuildmat.2016.07.036
[11]   CHENG L, CORD-RUWISCH R Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture[J]. Journal of Industrial Microbiology and Biotechnology, 2013, 40 (10): 1095- 1104
doi: 10.1007/s10295-013-1310-6
[12]   KERIS-SEN U D, SEN U, SOYDEMIR G, et al An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency[J]. Bioresource Technology, 2014, 152 (1): 407- 413
[13]   ZHOU Q, ZHANG P Y, ZHANG G M Enhancement of cell production in photosynthetic bacteria wastewater treatment by low-strength ultrasound[J]. Bioresource Technology, 2014, 161: 451- 454
doi: 10.1016/j.biortech.2014.03.106
[14]   DAI C, WANG B, DUAN C, et al Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii[J]. Colloids and Surfaces B: Biointerfaces, 2003, 30 (1): 37- 41
[15]   高大维, 雷德柱, 高文宏, 等 多波形超声波辐照对啤酒酵母细胞生长的影响[J]. 华南理工大学学报: 自然科学版, 2000, 28 (7): 36- 39
GAO Da-wei, LEI De-zhu, GAO Wen-hong, et al Effects of multi-waveform ultrasound irradiation on the growth of Saccharomyces Cerevisiae [J]. Journal of South China University of Technology: Natural Science Edition, 2000, 28 (7): 36- 39
[16]   LIU W S, YANG C Y, FANG T J Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of beta-glucosidase activity for bioconversion of isoflavones in soymilk[J]. Journal of Microbiological Methods, 2018, 148: 145- 150
doi: 10.1016/j.mimet.2018.04.006
[17]   YAN Y X, DING J Y, GAO J L Improvement of activated sludge bacteria growth by low intensity ultrasound[J]. IOP Conference Series: Earth and Environmental Science, Beijing, China: IOP Publishing, 2016, 39 (1): 012006
[18]   CHISTI Y Sonobioreactors: using ultrasound for enhanced microbial productivity[J]. Trends in Biotechnology, 2003, 21 (2): 89- 93
doi: 10.1016/S0167-7799(02)00033-1
[19]   DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36 (2): 197- 210
doi: 10.1016/j.ecoleng.2008.12.029
[20]   ZHAO Q, LI L, LI C, et al Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26 (12): 04014094
doi: 10.1061/(ASCE)MT.1943-5533.0001013
[21]   WHIFFIN V S. Microbial CaCO precipitation for the production of biocement [D]. Perth, Australia: Murdoch University, 2004.
[22]   RASOL R M, NOOR N M, YAHAYA N, et al Combination effects of ultrasound wave and biocide treatment on the growth of sulfate reducing bacteria (SRB)[J]. Desalination and Water Treatment, 2014, 52 (19-21): 3637- 3646
doi: 10.1080/19443994.2013.855005
[23]   彭劼, 何想, 刘志明, 等 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38 (10): 1769- 1774
PENG Jie, HE Xiang, LIU Zhi-ming, et al Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (10): 1769- 1774
doi: 10.11779/CJGE201610004
[24]   闫怡新, 刘红 低强度超声波强化污水生物处理机制[J]. 环境科学, 2006, 27 (4): 647- 650
YAN Yi-xin, LIU Hong Mechanism of low intensity ultrasound enhanced biological treatment of wastewater[J]. Environmental Science, 2006, 27 (4): 647- 650
doi: 10.3321/j.issn:0250-3301.2006.04.008
[25]   DOULAH M S Mechanism of disintegration of biological cells in ultrasonic cavitation[J]. Biotechnology and Bioengineering, 1977, 19 (5): 649- 660
doi: 10.1002/bit.260190504
[1] Yin-fei ZHENG,Yong-gui QIN,Ji-ye AN,Wen-xin FU. Ex vivo estimation of temperature combined with pyroelectric effect and ultrasound attenuation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 189-195.
[2] Bo PANG,Shi-zheng ZHU,Jing-feng BAI,Xiang JI. Measurement technique of high-intensity focused ultrasound driving power based on power coupler and detector[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1630-1636.
[3] ZHOU Mi, ZHOU Hao, ZHENG Yin fei. High frame-rate blood vector velocity imaging using  plane-wave ultrasound[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1410-1417.
[4] ZHOU Hao, ZHENG Yin fei. Simulation of nonlinear ultrasound propagation in heterogeneous tissue[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 574-579.
[5] TANG Kai, JIA Jia, DENG Jing, SONG Ya-li, LI Qing-song. Influencing factors analysis of 17β-estradiol degradation in aqueous system by ultrasound and KMnO4 combined with ultrasound[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1132-1140.
[6] GONG Xiao-hong, ZHENG Yin-fei, QIN Jia-le, ZHOU Hao.
Multiplicative gradient based edge detection method for medical ultrasound image
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1871-1878.
[7] JIN Yu-qi, CHU Xiao-liang, ZHENG Xiao-yuan, CHI Yong, YAN Jian-hua. Experimental study on ultrasound assisted extraction of
crude oil from oil sludge
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2178-2183.
[8] Zhou Hao, Wang You-zhao, Zheng Yin-fei. The advance of medical ultrasonic coded excitation[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 387-391.
[9] SONG Kun-po, XIA Shun-ren, XU Qing. Algorithm considering correlation of wavelet coefficients for
ultrasound image denoising
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2203-2208.