Elasto-plastic dynamic response analysis and seismic fragility research of high core earth-rockfill dam
Cong-cong JIN1,2(),Shi-chun CHI1,2,*()
1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China 2. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
The dynamic analysis of Nuozhadu high core earth-rockfill dam was conducted by adopting the improved PZC elastic-plastic model and the dynamic consolidation finite element program SWANDYNE II. The permanent deformation of the dam was obtained, and the calculation basis for seismic fragility analysis was provided. The crest relative seismic settlement rate was selected as the fragility performance parameter. The 60 well-matched ground motion records were picked from PEER according to the statistical earthquake situation in the main potential seismic source area of Nuozhadu high core earth-rockfill dam. The grade of performance level of the high core earth-rockfill dam was proposed combined with the performance of the dam anti-seismic level and the earthquake damage grade of core earth-rockfill dams. The seismic fragility analysis approach for the high earth-rockfill dam based on ANN-MSA was provided by introducing the artificial neural network method and combined with multi-strip method. The SWANDYNE II program was used to analyze the seismic ground motion by processing the selected seismic records. The relative seismic subsidence rates of the different PGAs can be obtained, which were used as training samples and test samples. RBFNN was utilized to train the training samples. The model through training and testing can well predict the relative seismic settlement rate. The seismic fragility of Nuozhadu high core earth-rockfill dam was analyzed combined with the prediction results of ANN and MSA method, and the three-dimensional seismic fragility surface of the dam was obtained.
Cong-cong JIN,Shi-chun CHI. Elasto-plastic dynamic response analysis and seismic fragility research of high core earth-rockfill dam. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1390-1400.
Fig.2Comparison of static test results and improved PZC model calculation results of gravel
Fig.3Comparison of dynamic test results and improved PZC model calculation results of gravel clay
Fig.4Contour lines of major and minor principal stresses
P100
Amax/(cm·s-2)
T1/ s
T2/ s
βmax
γ
2%
385
0.12
0.7
2.6
1
Tab.2Peak ground acceleration and parameters
Fig.5Time-history of input motion
Fig.6Contour lines of permanent displacements
Fig.7Deformation of dam outline after earthquake
震级分档
地震数量
5≤M<6
61
6≤M<7
22
7≤M<8
6
Tab.3Statistical table of historical destructive earthquakes
Fig.8Distribution of potential hypocentral regions
名称
震级上限
震源编号
普洱-思茅
7.0
4
临沧东
6.5
6
莲花塘
6.5
7
耿马-澜沧
8.0
10
勐海
7.5
11
勐海西南
7.5
12
Tab.4General potential hypocentral region
Fig.9Distribution of potential hypocentral regions
Fig.10Acceleration spectrum curves of 60 earthquakes
震害等级
震害状态
Ⅰ 级
宏观上无震害
Ⅱ 级
有宽度小于5 mm纵向裂缝,宏观上无沉降,需要作简单的处理
Ⅲ 级
有多条宽度大于5 mm纵向裂缝,宏观上可以看出沉降,有横向裂缝,需要进行整修和加固
Ⅳ 级
坝体产生滑裂,坝坡局部隆起、凹陷或滑坡,需要进行大修和加固
Ⅴ 级
坝坡大面积滑坡,坝基失稳,坝体陷落,设置垮坝,需要重修
Tab.5Earth rockfill dam earthquake damage criteria
Fig.11Relationship between peak ground acceleration and relative seismic settlement rate
性能水平
性能描述
δ
PL 1 轻微破坏
坝顶震陷量不超过50 cm
(0.5/H)×100%
PL 2 中等破坏
50年超越概率10%作用下坝顶相对震陷率
1.8 ${a_{\max }}$
PL 3 较重破坏
100年超越概率2%作用下坝顶相对震陷率
1.8 ${a_{\max }}$
PL 4 严重破坏
100年超越概率2%作用下坝顶相对震陷率加1 m安全超高
1.8 ${a_{\max }}$+(1.0/H)×100%
Tab.6Grade of performance level of high earth rockfill dam
Fig.12Loma Prieta earthquake wave
Fig.13Contour lines of permanent displacements
训练样本
检验样本
编号
PGA/g
δf/%
δR/%
E/%
编号
PGA/g
δf/%
δR/%
E/%
1
0.02
0.0129
0.0125
?3.10
31
0.04
0.0321
0.0323
0.65
2
0.06
0.0461
0.0454
?1.65
32
0.08
0.0793
0.0802
1.13
3
0.10
0.1128
0.1159
2.78
33
0.14
0.1681
0.1669
?0.70
4
0.12
0.1466
0.1512
3.16
34
0.18
0.2350
0.2320
?1.29
5
0.16
0.2154
0.2221
3.15
35
0.24
0.3358
0.3382
0.71
6
0.20
0.2906
0.2937
1.07
36
0.28
0.4142
0.4138
?0.08
7
0.22
0.3216
0.3298
2.54
37
0.34
0.5465
0.5337
?2.34
8
0.26
0.3946
0.4027
2.04
38
0.38
0.6256
0.6174
?1.30
9
0.30
0.4779
0.4767
?0.24
39
0.44
0.7484
0.7481
?0.04
10
0.32
0.5078
0.5144
1.30
40
0.48
0.8334
0.8385
0.61
11
0.36
0.5857
0.5907
0.85
41
0.54
0.9656
0.9784
1.32
12
0.40
0.6998
0.6689
0.44
42
0.58
1.0757
1.0743
?0.13
…
…
…
…
…
…
…
…
29
0.96
2.0869
2.0886
0.08
49
0.94
2.0247
2.0223
?0.11
30
1.00
2.2146
2.2230
0.38
50
0.98
2.1503
2.1358
?0.67
Tab.7RBFNN train result of relative settlement rate
Fig.14Earthquake fragility surface
[1]
吴永康, 王翔南, 董威信, 等 考虑流固耦合作用的高土石坝动力分析[J]. 岩土工程学报, 2015, 37 (11): 2007- 2013 WU Yong-kang, WANG Xiang-nan, DONG Wei-xin, et al Dynamic analyses of a high earth-rockfill dam considering effects of solid-fluid coupling[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (11): 2007- 2013
doi: 10.11779/CJGE201511010
[2]
蔡袁强, 于玉贞, 袁晓铭, 等 土动力学与岩土地震工程[J]. 土木工程学报, 2016, 49 (5): 9- 30 CAI Yuan-qiang, YU Yu-zhen, YUAN Xiao-ming, et al Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2016, 49 (5): 9- 30
[3]
高原, 方火浪 基于三维多重机构模型的土石坝地震反应分析[J]. 防灾减灾工程学报, 2013, 33 (4): 375- 382 GAO Yuan, FANG Huo-lang Seismic response analysis of rockfill dam based on 3D multi-mechanism model[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33 (4): 375- 382
[4]
KHOEI A R, AZAMI A R, HAERI S M Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: a comparison of Pastor-Zienkiewicz and cap models[J]. Computers and Geotechnics, 2004, 31 (5): 384- 410
doi: 10.1016/j.compgeo.2004.04.003
[5]
LI Tong-chun, ZHANG Hong-yang. Dynamic parameter verification of PZ model and its application of dynamic analysis on rockfill dam [C] // Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. Hawaii: ASCE, 2010: 2706-2713.
[6]
于玉贞, 卞锋 高土石坝地震动力响应特征弹塑性有限元分析[J]. 世界地震工程, 2010, (Suppl.1): 341- 345 YU Yu-zhen, BIAN Feng Elasto-plastic FEM analysis of dynamic response of high earth-rockfill dams during earthquake[J]. World Earthquake Engineering, 2010, (Suppl.1): 341- 345
[7]
孔宪京, 邹德高, 徐斌, 等 紫坪铺面板堆石坝三维有限元弹塑性分析[J]. 水力发电学报, 2013, 32 (2): 213- 222 KONG Xian-jing, ZOU De-gao, XU Bin, et al Three -dimensional finite element elasto-plastic analysis of Zipingpu concrete faced rock-fill dam[J]. Journal of Hydroelectric Engineer, 2013, 32 (2): 213- 222
[8]
魏匡民, 陈生水, 李国英, 等 高土石坝动力弹塑性与黏弹性分析方法比较研究[J]. 岩石力学与工程学报, 2019, 38 (5): 1018- 1029 WEI Kuang-min, CHEN Sheng-shui, LI Guo-ying, et al Study on dynamic elastoplastic and viscoelastic analysis methods for high earth-rock dams[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (5): 1018- 1029
[9]
王笃波, 刘汉龙, 于陶, 等 基于变形的土石坝地震易损性分析[J]. 岩土工程学报, 2013, 35 (5): 814- 819 WANG Du-bo, LIU Han-long, YU Tao, et al Seismic fragility analysis for earth-rockfill dams based on deformation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (5): 814- 819
[10]
孔宪京, 庞锐, 邹德高, 等 基于IDA的高面板堆石坝抗震性能评价[J]. 岩土工程学报, 2018, 40 (6): 978- 984 KONG Xian-jing, PANG Rui, ZOU De-gao, et al Seismic performance evaluation of high CFRDs based on incremental dynamic analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (6): 978- 984
doi: 10.11779/CJGE201806002
[11]
庞锐, 孔宪京, 邹德高, 等 基于MSA法的高心墙堆石坝地震沉降易损性分析[J]. 水利学报, 2017, 48 (7): 866- 873 PANG Rui, KONG Xian-jing, ZOU De-gao, et al Seismic subsidence fragility analysis of high CRFDs based on MSA[J]. Journal of Hydraulic Engineering, 2017, 48 (7): 866- 873
[12]
CHAN A H C. User manual for Diana Swandyne Ⅱ[R]. Glasgow: Glasgow University, 1989.
[13]
ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering [M]. New York: Wiley, 1998.
[14]
ZIENKIEWICZ O C, MROZ Z Generalized plasticity formulation and applications to geomechanics[J]. Mechanics of Engineering Materials, 1984, 44 (3): 655- 680
[15]
PASTOR M Modelling of anisotropic sand behavior[J]. Computers and Geotechnics, 1991, 11 (3): 173- 208
doi: 10.1016/0266-352X(91)90019-C
[16]
SASSA S, SEKIGUCHI H Analysis of waved-induced liquefaction of sand beds[J]. Getechnique, 2001, 51 (2): 115- 126
doi: 10.1680/geot.2001.51.2.115
[17]
LING H I, LIU Hua-bei Pressure-level dependency and densification behavior of sand through a generalized plasticity model[J]. Journal of Engineering Mechanics, 2003, 129 (8): 851- 860
doi: 10.1061/(ASCE)0733-9399(2003)129:8(851)
[18]
MANZANAL D, MERODO J A F, PASTOR M Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part1: saturated state[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (12): 1347- 1362
doi: 10.1002/nag.961
[19]
XU B, ZOU D, LIU H Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43 (6): 143- 154
[20]
LIU H, ZOU D, LIU J Constitutive modeling of dense gravelly soils subjected to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38 (14): 1503- 1518
doi: 10.1002/nag.2269
[21]
PASTOR M, ZIENKIEWICZ O C, CHAN A H C Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14 (3): 151- 190
doi: 10.1002/nag.1610140302
[22]
董威信. 高心墙堆石坝流固耦合弹塑性地震动力响应分析[D]. 北京: 清华大学, 2015. DONG Wei-xin. Elasto plastic fluid-solid coupling analysis of seismic response of high core-wall rockfill dam [D]. Beijing: Tsinghua University, 2015.
[23]
HARDIN B O, RICHART F E Elastic wave velocities in granular soils[J]. Journal of the Soil Mechanics and Foundation Engineers Division, ASCE, 1963, 89 (1): 603- 624
[24]
CHAN A H C. User manual for SM2D-soil model tester for 2-dimensional application [R]. Birmingham: University of Birmingham, 1995.
[25]
靳聪聪, 迟世春, 聂章博 土体PZC弹塑性本构模型参数的确定[J]. 解放军理工大学学报:自然科学版, 2018, 19 (1): 1- 6 JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo Seismic fragility assessment of high earth-rockfill dam considering seismic wave randomness and water level[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2018, 19 (1): 1- 6
[26]
杜晓东. 心墙掺砾土料的动强度特性研究[D]. 大连: 大连理工大学, 2014. DU Xiao-dong. Study on dynamic strength characteristics of gravelly soil for the core wall of earth-rock dam [D]. Dalian: Dalian University of Technology, 2014.
[27]
聂章博, 迟世春 循环荷载作用下心墙掺砾土动应力-应变孔压模型[J]. 大连理工大学学报, 2016, 56 (6): 624- 630 NIE Zhang-bo, CHI Shi-chun Dynamic stress-strain pore water pressure model of core gravelly soil under cyclic loading[J]. Journal of Dalian University of Technology, 2016, 56 (6): 624- 630
doi: 10.7511/dllgxb201606010
[28]
杜晓东, 迟世春, 聂章博 掺砾心墙土料的动强度特性研究[J]. 水利与建筑工程学报, 2014, (3): 110- 114 DU Xiao-dong, CHI Shi-chun, NIE Zhang-bo Study on dynamic strength characteristics of gravel soil material[J]. Journal of Water Resources and Architectural Engineering, 2014, (3): 110- 114
[29]
BAKER J W Efficient analytical fragility function fitting using dynamic structural analysis[J]. Earthquake Spectra, 2015, 31 (1): 579- 599
doi: 10.1193/021113EQS025M
[30]
PADGETT J E, NIELSON B G, DESROCHES R Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering and Structural Dynamics, 2008, 37 (5): 711- 726
doi: 10.1002/eqe.782
王琪, 朱晟, 冯燕明 基于性能的高土石坝抗震风险分析[J]. 水力发电, 2016, 42 (4): 57- 60 WANG Qi, ZHU Sheng, FENG Yan-ming Seismic risk analysis of high earth-rock dam based on performance[J]. Water Power, 2016, 42 (4): 57- 60
doi: 10.3969/j.issn.0559-9342.2016.04.014
[34]
SWAISGOOD J R. Embankment dam deformations caused by earthquakes [C]//2003 Pacific Conference on Earthquake Engineering. Christchurch: [s.n.], 2003.
[35]
朱亚姬, 贾宇峰, 陈崇茂 高心墙堆石坝地震永久变形特性分析[J]. 水电能源科学, 2011, 29 (8): 66- 70 ZHU Ya-ji, JIA Yu-feng, CHEN Chong-mao Characteristics analysis of permanent earthquake-induced deformation of high core rock-fill dam[J]. Water Resources and Power, 2011, 29 (8): 66- 70
doi: 10.3969/j.issn.1000-7709.2011.08.019
[36]
刘君, 刘博, 孔宪京 地震作用下土石坝坝顶沉降估算[J]. 水力发电学报, 2012, 31 (2): 183- 191 LIU Jun, LIU Bo, KONG Xian-jing Estimation of earthquake induced crest settlements of earth and rock fill dams[J]. Journal of Hydroelectric Engineering, 2012, 31 (2): 183- 191
[37]
梁海安. 土石坝震害预测及快速评估方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2012. LIANG Hai-an. Seismic damage prediction and emergency assessment of earth-rock dam [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2012.
[38]
邵磊, 迟世春, 李红军 温州.高心墙堆石坝极限抗震能力初探[J]. 岩土力学, 2011, 32 (12): 3827- 3832 SHAO Lei, CHI Shi-chun, LI Hong-jun Preliminary studies of ultimate aseismic capacity of high core rockfill dam[J]. Rock and Soil Mechanics, 2011, 32 (12): 3827- 3832
doi: 10.3969/j.issn.1000-7598.2011.12.046