Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1660-1665    DOI: 10.3785/j.issn.1008-973X.2012.09.017
    
Study of flow in porous media by LES-LBM coupling method
ZHOU Hao, RUI Miao, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To study the variations of single-phase flow in porous media with various Reynolds, numerical simulations of the flow were carried out by using the large-eddy simulation(LES) based on lattice Boltzmann method(LBM). Results show that the single-phase flow in porous media has a complex non-linear phenomena at high Reynolds numbers; the LES-LBM coupling method is superior to the traditional lattice Bhatnagar–Gross–Krook (LBGK) method in numerical stability. This method can clearly shows  three flow regimes in porous media when Reynolds numbers are increasing, which are the Darcy, the no-Darcy and the transition regimes. The streamlines at various Reynolds numbers show that the microscopic inertial effect leads to the macroscopic non-linear phenomena. The flow in porous media shows strong multiscale features. Further analyses on the calculation results demonstrate that the LES-LBM method can verify the Darcy-Forchhimer drag equation. The Darcy-Forchhimer drag increases with Reynolds numbers but decreases with porosity, and ratios of Forchhimer darg increases quickly with porosity.



Published: 01 September 2012
CLC:  TK 121  
Cite this article:

ZHOU Hao, RUI Miao, CEN Ke-fa. Study of flow in porous media by LES-LBM coupling method. J4, 2012, 46(9): 1660-1665.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.09.017     OR     http://www.zjujournals.com/eng/Y2012/V46/I9/1660


多孔介质内流体流动的大涡格子Boltzmann方法研究

为研究多孔介质内流动随Re数变化的特点,采用结合Smagorinsky亚格子模型的格子Boltzmann方法(LES-LBM)对多孔介质内流动进行了数值模拟.结果表明:多孔介质内的单相流动在高Re数时会表现出复杂的非线性现象;LES-LBM克服了传统LBGK方法模拟高Re数流动时容易产生数值不稳定的缺点,能清晰地描述出多孔介质内流动存在的3个区域,即低速时的线性达西区、过渡区和高速时的非线性二次区;不同Re下的流线图还说明微观的惯性作用最终导致了多孔介质宏观上的非线性现象,多孔介质流动呈现明显的多尺度特征.进一步分析计算结果可以证明:LES-LBM方法能准确地验证Darcy-Forchhimer阻力方程,Darcy-Forchhimer总阻力随Re数增加而增加,随孔隙率增加而减小,并且小孔隙率下的Forchhimer阻力占总阻力比例小于大孔隙率时的比例.

[1] 闫晓,肖泽军,黄彦平,等. 多孔介质中流动换热特性的研究进展[J]. 核动力工程,2006,27(S1): 77-82.
YAN Xiao, XIAO Zejun, HUANG Yanping, et al. Research progress on flow and heat transfer in porous media[J]. Nuclear Power Engineering,2006,27(S1): 77-82.
[2] 刘学强,闫晓,肖泽军. 多孔介质内单相流阻力特性[J]. 核动力工程, 2009(5): 40-43.
LIU Xueqiang, YAN Xiao, XIAO Zejun. Resistance Characteristics of singlephase flow through porous media[J]. Nuclear Power Engineering,2009(5): 40-43.
[3] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress,1952, 48(2): 89-94.
[4] MACDONALD I F, ELSAYED M S, MOW K, et al. Flow through porousmedia  ergun equation revisited[J]. Industrial & Engineering Chemistry Fundamentals,1979, 18(3): 199-208.
[5] BEAVERS G S, SPARROW E M. Nondarcy flow theough fibrous porous media[J]. Journal of Applied Mechanics, 1969, 36(4): 711-714.
[6] COULAUD O, MOREL P, CALTAGIRONE J P. Numerical modeling of nonlinear effects in laminarflow through a porousmedium[J]. Journal of Fluid Mechanics,1988, 190: 393-407.
[7] CHAI Z H, SHI B C, LU J H, et al. Nondarcy flow in disordered porous media: A lattice Boltzmann study[J]. Computers & Fluids,2010, 39(10): 2069-2077.
[8] AIDUN C K, CLAUSEN J R. LatticeBoltzmann Method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439-472.
[9] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review e, 2000, 61(6Part A): 6546-6562.
[10] NOURGALIEV R R, DINH T N, THEOFANOUS T G, et al. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications[J]. International Journal of Multiphase Flow, 2003, 29(1): 117-169.
[11] 冯士德,钟霖浩,高守亭,等. 格子Boltzmann模型平衡分布边界条件和多棱柱排列渗流流场的数值模拟[J]. 物理学报. 2007(3): 1238-1244.
FENG Shide, ZHONG Linhao, GAO Shouting. Equilibrium distribution boundary condition in lattice Boltzmann model and numerical simulation of Darcy_Forcheimer drag for fluid flow across a square cylinder array[J].Acta Physics Sinica,2007(3): 1238-1244.
[12] 张兆顺,崔桂香,许春晓. 湍流理论与模拟[M]. 北京:清华大学出版社, 2005: 279.
[13] 郭照立,郑楚光,柳朝晖. 基于Lattice Boltzmann方法的圆柱绕流大涡模拟[J]. 工程热物理学报,2002(4): 479-481.
GUO Zhaoli, ZHENG Chuguang, LIU Zhaohui. Large eddy simulation of flow past a circular cylinder based on lattice Boltzmann method[J].Journal of Engineering Thermophysics. 2002(4): 479-481.
[14] HAN K, FENG Y T, OWEN D. Coupled lattice Boltzmann and discrete element modelling of fluidparticle interaction problems[J]. Computers & Structures,2007, 85(1114): 1080-1088.
[15] LEE S L, YANG J H. Modeling of DarcyForchheimer drag for fluid flow across a bank of circular cylinders[J]. International Journal of Heat and Mass Transfer,1997, 40(13): 3149-3155.
[16] SANGANI A S, ACRIVOS A. Slow flow past periodic arrays of cylinders with application to heattransfer[J]. International Journal of Multiphase Flow,1982, 8(3): 193-206.
[17] 柴振华,郭照立,施保昌. 利用多松弛格子Boltzmann方法预测多孔介质的渗透率[J]. 工程热物理学报,2010(1): 107-109.
CHAI Zhenhua, GUO Zhaoli, SHI Baochang. Prediction of permeability in porous media with multirelaxationtime lattice boltzmann method[J]. Journal of Engineering Thermophysics, 2010(1): 107-109.
[18] DONG P, FENG S D, ZHAO Y. Numerical analysis of fluid flow through a cylinder array using a lattice Boltzmann model[J]. Chinese Physics,2004, 13(4): 434-440.

[1] XU He-wei, ZHOU Hao, CEN Ke-fa. Measure carbon content in fly ash by infrared reflection method[J]. J4, 2011, 45(5): 890-895.
[2] DIAO Jia-Pei, ZHOU Hao, CEN Ge-Fa. Radiation characteristics of syngas in  radiation waste heat boiler
at high temperature and high pressure
[J]. J4, 2010, 44(9): 1781-1786.