Please wait a minute...
J4  2010, Vol. 44 Issue (9): 1781-1786    DOI: 10.3785/j.issn.1008-973X.2010.09.024
    
Radiation characteristics of syngas in  radiation waste heat boiler
at high temperature and high pressure
ZHAO Jia-pei, ZHOU Hao, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization of Zhejiang University, Hangzhou 310027, Zhejiang Province, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The exponential wideband model (EWBM) Proposed by Edwards was used to investigate the radiation characteristics of the gas mixture of carbon monoxide, carbon dioxide and water vapor at high temperature and high pressure.  Total absorptivit and total emissivit of the syngas mixtures at different temperatures, pressures, wall temperatures and beam lengths were accordingly calculated. The total absorptivity and total emissivity at low pressures calculated according to EWBM were compared with those given by the Hottel chart,which showed good agreement. An engineering example of an integrated gasification combined cycles (IGCC) radiation waste heat boiler (RWHB) at  35 MPa and the mean temperature of 1 300 K was presented. In an attempt to calculate the heat transfer in the RWHB, appropriate radiative and convective heat transfer models were therefore selected. Results indicated that radiative heat transfer was the primary heat transfer mode in the RWHB, and the amount of radiative heat transfer accounted for as much as 70% of the total amount. Furthermore, the calculated value of boiler outlet temperature also yielded good agreement with the field data.



Published: 01 September 2010
CLC:  TK 121  
Cite this article:

DIAO Jia-Pei, ZHOU Hao, CEN Ge-Fa. Radiation characteristics of syngas in  radiation waste heat boiler
at high temperature and high pressure. J4, 2010, 44(9): 1781-1786.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.09.024     OR     http://www.zjujournals.com/eng/Y2010/V44/I9/1781


辐射废锅内高温高压合成气的辐射特性

以Edwards的指数宽带模型为基准,研究了含一氧化碳、二氧化碳和水蒸气的整体煤气化联合循环系统(IGCC)气化炉出口合成气在高温高压环境下的辐射特性,计算出了混合物在不同气体温度、压力、壁面温度和射线行程长度下的总吸收比和总发射率,并将低压下的值与Hottel线算图进行了对比,对比结果良好.针对一工程实际IGCC(压力35 MPa、平均温度约1 300 K)辐射余热锅炉,选用了合理的辐射与对流换热模型,将指数宽带模型应用于炉内换热计算,结果显示:辐射换热是炉内主要换热方式,辐射换热可达总换热量的70%左右,炉膛出口烟温计算值与现场值符合较好.

[1] 王勤辉, 方梦祥, 骆仲泱,等. 汽气共生热电气联产技术的研究[J] 浙江大学学报:工学版, 1997,31(2): 253260.
WANG Qinhui, FANG Mengxiang, LUO Zhongyang, et al. Research on steam gas cogeneration technology[J]. Journal of Zhejiang University:Engineering Science, 1997, 31(2): 253260.
[2] 吴学成, 王勤辉, 骆仲泱,等. 气化参数影响气流床煤气化的模型研究(Ⅰ):模型建立及验证[J] 浙江大学学报:工学版, 2004,38(10): 13611365,1386.
WU Xuecheng, WANG Qinhui, LUO Zhongyang, et al. Modelling on effects of operation parameters on entrained flow coal gasification (Ⅰ): Model establishment and validation [J]. Journal of Zhejiang University: Engineering Science, 2004, 38(10): 13611365, 1386.
[3] 郭新生, 王璋. IGCC电站优良的环保特性和环保效益[J] 燃气轮机技术, 2005,18(3): 812.
GUO Xinsheng, WANGzhang. Excellent characteristics and benefit of IGCC power plant for environment protection [J].Gas Turbine Technology, 2005, 18(3): 812.
[4] 柴伟东, 韩万金, 林公舒. IGCC整体煤气化联合循环[J] 汽轮机技术, 2003,45(4): 196197.
CAI Weidong, HAN Wanjin, LIN Gongshu. Integrated coal gasification combined cycle [J].Turbine Technology, 2003,45(4):196197.
[5] 徐强, 曹江, 周一工,等. 整体煤气化联合循环(IGCC)特点综述及产业化前景分析[J]. 锅炉技术, 2006,37(6): 19.
XU Qiang, CAO Jiang, ZHOU Yigong, et al. Features summarization and industrialization analysis of integrated gasification combined cycle (I GCC)[J].Boiler Technology.2006,37(6):19.
[6] EDWARDS D K. Absorption of radiation by carbon monoxide gas according to the Exponential WideBand Model[J]. Applied Optics, 1965,4(10): 13521353.
[7] EDWARDS D K, BALAKRISHNAN A. Thermal radiation by combustion gases [J]. International Journal of Heat Sass Transfer, 1973,16(1): 2540.
[8] EDWARDS D K, MENARD W A. Comparison of models for correlation of total band absorption [J]. Applied Optics, 1964,3(5): 621626.
[9] GOODY R M. Atmosphere radiation [M]. Oxford: Clarendon Press, 1964.
[10] LI W, TONG T W, DOBRANICH D, et al. A combined narrowand wideband model for computing the spectral absorption coefficient of CO2,CO,H2O,CH4,C2H2,and NO[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995,54(6): 961970.
[11] TIEN C L, LOWDER J E. A correlation for total band absorption of radiating gases [J]. International Journal of Heat Mass Transfer, 1966,9(7): 698701.
[12] TIEN C L, LOWDER J E. On a simple correlation for total band absorption of rading gases [J]. International Journal of Heat Mass Transfer, 1969, 12(9): 11791181.
[13] LECKNER B. Spectral and total emissivity of water vapor and carbon dioxide [J]. Combustion and Flame, 1972, 19 (1): 3348.
[14] HOTTEL H C, SARFIM A F. Radiative transfer [M]. New York:McGrawHill, 1967.
[15] 刘林华, 余其铮, 阮立明,等. 煤粉燃烧产物的辐射特性[J]. 动力工程, 1996,16(6): 1421,7374.
LIU Linhua, YU Qizheng, RUAN Liming, et al. Radiation properties of pulverized coal combustion products[J]. Power Engineering, 1996, 16(6):1421, 7374.
[16] 谈和平, 夏新林, 刘林华,等. 红外辐射特性与传输的数值计算:计算热辐射学[M]. 哈尔滨:哈尔滨工业大学出版社, 2006:8085.
[17] MODEST M F. Radiative heat transfer[M]. 2nd ed. New York: Academic Press, 2003:334336.
[18] FELSKE J D, TIEN C L. Infrared radiation from nonhomogeneous gas mixtures having overlapping bands[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1974, 14(1): 3548.
[19] 杨世铭, 陶文铨. 传热学[M]. 3th ed.北京:高等教育出版社, 1998:167.
[20] KUTATELADZE S S, BORISHANSKII V M. A concise encyclopedia of heat transfer [M]. New York: Pergamon Press, 1966:108111.
[21] POLING B E, PRAUSNITZ J M, OCONNELL J P.气液物性估算手册 [M]. 5版.北京:化学工业出版社, 2006:325435.
[22] 罗森W.M. 传热学基础手册[M]. 下册.北京:科学出版社, 1992:390404.

[1] ZHOU Hao, RUI Miao, CEN Ke-fa. Study of flow in porous media by LES-LBM coupling method[J]. J4, 2012, 46(9): 1660-1665.
[2] XU He-wei, ZHOU Hao, CEN Ke-fa. Measure carbon content in fly ash by infrared reflection method[J]. J4, 2011, 45(5): 890-895.