Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering     
Development and swimming experimental research on bionic stingray robot
WANG Yang wei, YAN Yong cheng, LIU Kai, ZHAO Dong biao
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download:   PDF(7932KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A bionic stingray robot with an annular long-fin was designed based on an inspiration from the undulating propulsion of stingray, a fish of rajiform, which moves forward with its pectoral fin undulating. An analysis on the stingray’s muscle and skeleton structure was conducted. A control strategy was formulated for maneuvering swimming, and a prototype of bionic stingray robot was developed. Then an experimental research of the influence of undulating frequency and amplitude was conducted on its swimming performance based on swimming image sequence processing method. Results show that the bionic robot prototype can swim in a way similar to stingray with a high swimming stability and maneuverability. The straight-line swimming velocity and standing turning velocity can increase with undulating frequency and amplitude. The maximum straight-line swimming velocity can reach 109 mm/s, and the maximum standing turning velocity can reach 93°/s.



Published: 01 January 2017
CLC:  TH 113  
Cite this article:

WANG Yang wei, YAN Yong cheng, LIU Kai, ZHAO Dong biao. Development and swimming experimental research on bionic stingray robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 106-112.


仿生机器魟鱼研制与游动性能实验研究

为了开发一种游动稳定性和机动性高的水下机器人,从鳐科模式游动的魟鱼胸鳍波动推进中得到灵感,在分析肌肉和骨骼结构的基础上,设计带有环形长鳍的仿生机器魟鱼,研究机动游动的控制策略.研制仿生机器魟鱼样机.基于游动图像序列处理方法,通过实验研究波动频率和幅值对游动性能的影响.结果表明,仿生样机能够实现与魟鱼相似的游动运动,游动稳定性好、机动性高,直线游动速度和原地转弯速度随波动频率和波动幅值的增大而增大,最大直线游动速度为109 mm/s,最大原地转弯速度为93°/s.

[1] TRIANTAFYLLOU M S,TRIANTAFYLLOU G S. An efficient swimming machine[J]. Scientific American, 1995, 272(3): 64-70.
[2] BANDYOPADHYAY P R. Trends in biorobotic autonomous undersea vehicles [J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 109-139.
[3] WEBB P W. Form and function in fish swimming [J]. Scientific American, 1984, 251(1): 72-83.
[4] SFAKIOTAKIS M, LANE D M, DAVIES J B C.Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
[5] BARRETT SCOTT D. The design of a flexible hull undersea vehicle propelled by an oscillating foil [D].Massachusetts: Massachusetts Institute of Technology,1994.
[6] HIROYOSHI S, NAOMI K, KOICHI S. Load characteristics of mechanical pectoral fin [J]. Experiments in Fluids, 2008, 44(5): 759-771.
[7] CAO Y, BI S, CAI Y, et al. Applying central pattern generators to control the robofish with oscillating pectoral fins [J]. Industrial Robot, 2015, 42(5): 392-405.
[8] MA H, CAI Y, WANG Y, et al. A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral fins [J]. Industrial Robot, 2015, 42(3): 214-221.
[9] RUSSO R S, BLEMKER S S, FISH F E, et al. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bioinspired design [J]. Bioinspiration and Biomimetics, 2015, 10(4): 215.
[10] YANG S B, QIU J, HAN X Y. Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish [J]. Journal of Bionic Engineering, 2009,6(2): 174-179.
[11] BIOLEAU R, FAN L, MOORE T. Mechanization of rajiform swimming motion: the making of Roboray [R]. Vancouver: Engineering Physics Project Laboratory, University of British Columbia, 2002.
[12] 胡天江.仿生长鳍波动适应性理论与控制方法研究[D].长沙:国防科学技术大学, 2008.
HU Tianjiang. Undulation adaptability theory and control for the biomimetic undulating fins [D]. Changsha: National University of Defense Technology,2008.
[13] ALVARADO P V, CHIN S, LARSON W, et al. A soft body underactuated approach to multi degree of freedom biomimetic robots: a stingray example [C]∥ Proceedings of the 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo: IEEE, 2010: 473-478.
[14] RAHMAN M M, SUGIMORI S, MIKI H, et al. Braking performance of a biomimetic squidlike underwater robot [J]. Journal of Bionic Engineering, 2013,10(3): 265-273.
[15] 高飞,王玉魁,王振龙,等.形状记忆合金丝驱动的仿生墨鱼水下机器人的原型设计[J].机器人, 2013,35(3): 346-351.
GAO Fei, WANG Yukui, WANG Zhenlong, et al. Prototype design of a kind of biomimetic cuttlefish underwater robot actuated by SMA wires [J]. Robot, 2013, 35(3): 346-351.
[16] WEI Q P, WANG S, DONG X, et al. Design and kinetic analysis of a biomimetic underwater vehicle with two undulating longfns [J]. Acta Automatica Sinica, 2013, 39(8): 1330-1338.
[17] 章永华,何建慧.仿生蓝点魟的结构设计及建模[J].机械科学与技术,2012, 31(4): 627-632.
ZHANG Yonghua, HE Jianhui.Mechanism design and modeling of a biomimetic bluespotted ray [J]. Mechanical Science and Techology for Aerospace Engineering, 2012, 31(4): 627-632.
[18] 王扬威.仿生墨鱼机器人及其关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2011.
WANG Yangwei. Biomimetic cuttlefish robot and its key technology research [D]. Harbin: Harbin Institute of Technology, 2011.
[19] 杭观荣,王振龙,王扬威,等.肌肉性静水骨骼原理的仿乌贼鳍推进器[J].哈尔滨工业大学学报,2009,41(11): 59-64.
HANG Guanrong, WANG Zhenlong, WANG Yangwei, et al. Squid finlike propeller based on the principle of muscular hydrostat [J]. Journal of Harbin Institute of Technology, 2009, 41(11): 59-64.
[20] 谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模与控制[D].长沙:国防科学技术大学, 2006.
XIE Haibin. Design, modeling, and control of bionic underwater vehicle propelled by multiple underlatory fins [D]. Changsha: National University of Defense Technology, 2006.
[21] ROSENBERGER L J, WESTNEAT M W. Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (chondrichthyes: Dasyatidae) [J]. The Journal of Experimental Biology, 1999, 202: 3523-3539.
[22] 王扬威,赵东标,刘凯,等.仿生机器魟鱼及其运动方式:201110428002.7[P]. 20120627.

[1] Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(2): 222-228.
[2] Yan-biao LI,Tao-tao XU,Hang ZHENG,Ze-sheng WANG. Dynamic characteristics of spatial parallel mechanism with spherical joint clearance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(2): 348-356.
[3] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(1): 40-47.
[4] Jin ZHOU,Tian-yu GAO,Yi CHEN,Hong-hao XI. Model updating of dual-rotor decanter centrifuge with dynamic test[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(2): 241-249.
[5] HUANG Wei di, GAN Chun biao, YANG Shi xi. Dynamic modeling and vibration response analysis of high speed motorized spindle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2195-2206.
[6] HUANG WEI,WANG Jia xu,XU Tao,XIAO Ke, LI Jun yang,WU Hui chao. Vibration characteristics analysis and experimental research on metal rubber composite gear pair[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2231-2238.
[7] CHENG Wei dong, ZHAO De zun. EMD soft thresholding denoising algorithm for rolling element bearing rotational frequency estimation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 428-436.
[8] TIAN Hong liang,YU Yuan,ZHANG Yi. Normal rough contact modeling of machine tool support ground foot joint interface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2111-2118.
[9] WEI Yi-min, YANG Shi-xi, GAN Chun-biao.
Experiment for propagation characteristics of longitudinal wave in multi-step rod with variable cross-section
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1146-1153.
[10] YANG Yi-ling, LOU Jun-qiang, WEI Yan-ding, FU Lei, TIAN Geng, ZHAO Xiao-wei. Optimal placement of piezoelectric actuators using synthetic modal control force[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 841-847.
[11] YANG Dan, GAN Chun-biao, YANG Shi-xi, WANG Yue-hua. Analysis on response of a rotor with initial bend deformation under coupling fault of crack and rub-impact[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1496-1501.
[12] LI Qiang, LIU Shu-lian, YU Gui-chang, PAN Xiao-hong, ZHENG Shui-ying. Lubrication and stability analysis of nonlinear rotor-bearing system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(10): 1729-1736.
[13] ZHONG Zhi-xian, ZHU Chang-sheng. Dynamics behavior of multi-disk flexible rotor system
with transverse crack
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(10): 1839-1845.
[14] WANG Yue-hua, GAN Chun-biao, YANG Shi-xi,LEI Hua. Noise reduction on sample responses of Hénon-Heiles
system subjected to bounded noise excitation
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(11): 1895-1899.