Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Optimal placement of piezoelectric actuators using synthetic modal control force
YANG Yi-ling1, LOU Jun-qiang2, WEI Yan-ding1, FU Lei1, TIAN Geng1, ZHAO Xiao-wei1
1. Institute of Manufacturing Engineering, Key Laboratory of Advanced Manufacturing Technology of  Zhejiang Province, Zhejiang University, Hangzhou 310027, China;2. College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
Download:   PDF(2056KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

This paper dealt with the optimal placement of actuators in smart flexible structures. Based on the analysis of  dynamic equations and state space equations of flexible structures,  the modal theory was adopted and the singular value decomposition of control matrices was employed. Then, a criterion of the maximum synthetic modal control force  was proposed. The criterion involved the effect of reserved  and residual modes to the modal control force. Meanwhile, modal weights were considered. Finally,  a flexible beam with piezoelectric actuators/strain sensors was chosen as an example,  theoretical calculations and the improved genetic algorithm were used for the optimal analysis. Thus, the optimal positions of piezoelectric actuators with maximum synthetic modal control force were found, and an experimental system was set up to verify the proposed  method. The experimental results demonstrate that the  system has a good synthetic modal control force and control effect by using the optimal placement result of actuators. The proposed evaluation criterion and optimal method is feasible.



Published: 26 December 2015
CLC:  TP 24  
  TH 113  
Cite this article:

YANG Yi-ling, LOU Jun-qiang, WEI Yan-ding, FU Lei, TIAN Geng, ZHAO Xiao-wei. Optimal placement of piezoelectric actuators using synthetic modal control force. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 841-847.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.05.005     OR     http://www.zjujournals.com/eng/Y2015/V49/I5/841


综合模态控制力下压电致动器的优化布局

针对智能挠性结构中致动器的优化布局问题,在分析挠性结构动力学方程和状态空间方程的基础上,采用模态理论,对系统控制矩阵进行奇异值分解,提出一种表征最大综合模态控制力的评价准则,该评价准则兼顾保留模态和截断模态对模态控制力的影响,综合考虑模态权重.最后以粘贴有压电致动器/应变传感器的挠性梁为例,通过理论计算和改进的遗传算法进行优化分析,得到综合模态控制力最大时压电致动器的布局位置,并建立实验测控系统进行验证.实验结果表明:采用优化结果中的致动器布局时,系统具有较好的综合模态控制力,控制效果也更优,所提出的评价准则和优化方法是可行的.

[1] RAMOS F, FELIU V, PAYO I. Design of trajectories with physical constraints for very lightweight single link flexible arms [J]. Journal of Vibration and Control, 2008, 14(8): 1091-1110.
[2] 朱灯林, 吕蕊, 俞洁. 压电智能悬臂梁的压电片位置、尺寸及控制融合优化设计[J]. 机械工程学报, 2009,45(2): 262-267.
ZHU Deng-lin, LV Rui, YU Jie. Integrated optimal design of the PZT position, size and control of smart cantilever beam [J].Chinese Journal of Mechanical Engineering, 2009, 45(2): 262-267.
[3] 魏燕定, 娄军强, 吕永桂, 等. 振动主动控制中性二次型最优控制问题研究[J]. 浙江大学学报:工学版,2009, 43(3): 420-424.
WEI Yan-ding, LOU Jun-qiang, LV Yong-gui, et al. Research on linear quadratic optimal control problem in active vibration control [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(3): 420-424.
[4] HU Q L, MA G F. Vibration control of flexible spacecraft actuated by piezoceramics via variable structure strategy [J]. Journal of Harbin Institute of Technology, 2007, 14(5): 604-608.
[5] DUTTA R, GANGULI R, MANI V. Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains [J]. Smart Materials & Structures,2011, 20(10501810): 114.
[6] GURSES K, BUCKHAM B J, PARK E J. Vibration control of a single-link flexible manipulator using an array of fiber optic curvature sensors and PZT actuators [J]. Mechatronics, 2009, 19(2): 167-177.
[7] 钱锋, 王建国, 汪权, 等. 基于模态应变能分布的压电致动器/传感器位置优化遗传算法[J]. 振动与冲击, 2013,32(11): 161-166.
QIAN Feng, WANG Jian-guo, WANG Quan, et al. Optimal placement of piezoelectric actuator/sensor using genetic algorithm based on modal strain energy distribution[J]. Journal of Vibration and Shock, 2013, 32(11):161-166.
[8] LINDBERG R E, LONGMAN R W. On the number and placement of actuators for independent model space control [J]. Journal of Guidance, Control, and Dynamics, 1984, 7(2): 215-221.
[9] AMBROSIO P,RESTA F, RIPAMONTI F. An H2 norm approach for the actuator and sensor placement in vibration control of a smart structure [J]. Smart Materials and Structures, 2012, 21(12): 125016.
[10] 邱志成. 挠性板振动抑制的敏感器与驱动器优化配置[J]. 宇航学报, 2002,23(4): 30-36.
QIU Zhi-cheng. Optimal placement of sensors and actuators for flexible plate of vibration suppression[J]. Journal of Astronautics, 2002, 23(4): 30-36.
[11] BRUANT I, PROSLIER L. Optimal location of actuators and sensors in active vibration control [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(3): 197-206.
[12] NESTOROVIC T, TRAJKOV M. Optimal actuator and sensor placement based on balanced reduced models [J]. Mechanical Systems and Signal Processing, 2013, 36(2): 271-289.
[13] SUN D, MILLS J K, SHAN J, et al. A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement [J]. Mechatronics, 2004, 14(4): 381-401.
[14] WANG Q, WANG C M. A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures [J]. Journal of Sound and Vibration, 2001, 242(3): 507-518.
[15] BIGLAR M, MIRDAMADI H R, DANESH M. Optimal locations and orientations of piezoelectric transducers on cylindrical shell based on gramians of contributed and undesired Rayleigh-Ritz modes using genetic algorithm [J]. Journal of Sound and Vibration, 2014, 333(5): 1224-1244.
[16] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. Systems, Man and Cybernetics, 1994, 24(4): 656-667.

[1] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 706-713.
[2] ZHANG Ming-kui, CHENG Wen-ming, LIU Fang. Coupling effect between load characteristics and joint driving characteristics of powered exoskeleton[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 807-816.
[3] TANG Zhi-dong, YUN Chao. Quick action coupling technology in full-automatic quick coupling device: a review[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 461-470.
[4] CHEN Peng, XIANG Ji, WEI Wei. Torque limit constrained control of redundant manipulator based on GWLN method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 68-74.
[5] QIAN Long hao, HU Shi qiang, YANG Yong sheng. Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 75-81.
[6] XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng. Magnetic driving method of inspection robot for HVDC transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1937-1945.
[7] ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1980-1986.
[8] ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1637-1645.
[9] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1677-1683.
[10] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1381-1386.
[11] DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1298-1306.
[12] ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.
[13] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 385-391.
[14] HUANG Shui hua, JIANG Pei,WEI Wei, XIANG Ji, PENG Yong gang. Attitude pointing control of manipulator based on quaternion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 173-179.
[15] HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2261-2268.