Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering     
Steering performance of underwater glider in water column monitoring
ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin
State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310027,China
Download:   PDF(1776KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An underwater glider was presented for water column monitoring, which could adjust its pitch angle within a large range. The underwater glider could realize both normal gliding and vertical profile monitoring by using a gravity center adjustment module with multiple degrees of freedom. Research was conducted to enhance the steering efficiency for the underwater glider and enlarge the spacing between different water column checkpoints. An amended hydrodynamic model for large range attack angles was presented. Hydrodynamic coefficients computation, motion simulations, and a lake trial were conducted to analyze how the position of the wing and the steering pitch angle influenced the steering process. The results of the simulations and the lake trial show that enlarging the distance between the wing and the tail, and decreasing the steering pitch angle can reduce the steering radius, enhance the steering ratio, and enhance the horizontal deviation distance on the desired orientation. The lake trial shows that steering with the optimal pitch angle at 5° decreases the steering radius by 66%, increases the steering ratio by 330%, and increases the desired deviation distance by 77% over steering with a normal pitch angle at 27°.



Published: 22 September 2016
CLC:  TP 242  
Cite this article:

ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1637-1645.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.09.01     OR     http://www.zjujournals.com/eng/Y2016/V50/I9/1637


水柱测量中的水下滑翔机转向性能

为了实现水体的水柱测量,设计一种具备大范围俯仰角调节能力的水下滑翔机.该滑翔机利用多自由度重心调节系统,能同时实现常规滑翔与竖直剖面监测.研究扩大水下滑翔机在水柱测量点之间的间隔并提高转向过程的效率的方法.采用经过扩展攻角的水动力模型、计算流体力学方法、运动仿真以及湖水试验,分析不同的侧翼位置以及转向俯仰角对应的转向性能.试验与仿真结果表明,将侧翼位置远离尾翼并在转向过程中保持较小的俯仰角,能够减小转向半径,提高转向率以及整个滑翔过程在目标方向上的覆盖范围.湖水试验显示,相对于常规的27°转向俯仰角,使用更优的5°转向俯仰角可以使转向半径降低66%,使转向率提高330%,使目标覆盖距离提高77%.

[1] HE R, WOOLLER M J, POHLMAN J W, et al. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments [J]. The ISME Journal, 2012, 6(10): 1937-1948.
[2] WENG Y, YANG H, HE J, et al. Microstructure measurement form an underwater glider: motion analysis and experimental results [C]∥ OCEANS 2015. Genova: IEEE, 2015: 15.
[3] 孙芳, 郑忠明,陆开宏,等. 底泥微生物活性对蓝藻水华水柱及沉积物间隙水氮磷分布的影响[J]. 生态科学, 2011, 30(3): 217-222.
SUN Fang, ZHENG Zhongmin, LU Kaihong, et al. Microbe activities in the sediment and its influences on N、 P distribution of algae bloom water column and interstitial waters [J]. Ecological Science, 2011, 30(3): 217-222.
[4] GARNER S B, PATTERSON W F, PORCH C E, et al. Experimental assessment of circle hook performance and selectivity in the northern gulf of mexico recreational reef fish fishery [J]. Marine and Coastal Fisheries Dynamics Management and Ecosystem Science, 2014, 6(1): 235-246.
[5] DUNBABIN M, GRINHAM A. Experimental evaluation of an autonomous surface vehicle for water quality and greenhouse gas emission monitoring [C]∥ IEEE 2010 International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 5268-5274.
[6] FAN S S, YANG C J, PENG S L, et al. Underwater glider design based on dynamic model analysis and prototype development [J]. Journal of Zhejiang University: Science C, 2013, 14(8): 583-599.
[7] CAO J, CAO J, YAO B, et al. Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider [C]∥ OCEANS 2015. Genova: IEEE, 2015: 18.
[8] ZHANG F, ZHANG F, TAN X. Tailenabled spiraling maneuver for gliding robotic fish [J]. Journal of Dynamic Systems Measurement and Control, 2014, 136(4): 112-120.
[9] SCHOFIELD O, KOHUT J, ARAGON D, et al. Slocum gliders: robust and ready [J]. Journal of Field Robotics, 2007, 24(6): 473-485.
[10]  ZHANG S, YU J, ZHANG A, et al. Spiraling motion of underwater gliders: modeling, analysis, and experimental results [J]. Ocean Engineering, 2013, 60(3): 113.
[11] YANG H, MA J. Optimization of displacement and gliding path and improvement of performance for an dunderwater thermal glider [J]. Journal of Hydrodynamics, 2010, 22(5): 618-625.
[12] FAN S S, WOOLSEY C. Elements of underwater glider performance and stability [J]. Marine Technology Society Journal, 2013, 47(3): 81-98.
[13] SINGH Y, BHATTACHARYYA S K,IDICHANDY V G. CFD approach to steady state analysis of an underwater glider [C]∥ OCEANS 2014. St. Johns: IEEE, 2014: 15.
[14] LIU F, WANG Y, NIU W, et al. Hydrodynamic performance analysis and experiments of a hybrid underwater glider with different layout of wings [C]∥ OCEANS 2014. Taipei: IEEE, 2014: 15.
[15] GEISBERT J B. Hydrodynamic modeling for autonomous underwater vehicles using computational and semiempirical methods [D]. Virginia: Virginia Polytechnic Institute and State University, 2007.
[16] NAKAMURA M, ASAKAWA K, HYAKUDOME T, et al. Hydrodynamic coefficients and motion simulations of underwater glider for virtual mooring [J]. IEEE Journal of Oceanic Engineering, 2013, 38(3): 581-597.
[17] MITCHELL B, WILKENING E, MAHMOUDIAN N. Developing an underwater glider for educational purposes [C]∥ IEEE International Conference on Robotics and Automation. Kulsruhe: IEEE, 2013: 3423428.
[18] SHERMAN J, DAVIS R, OWENS W B, et al. The autonomous underwater glider “Spray” [J]. Oceanic Engineering IEEE Journal, 2001, 26(4): 437-446.
[19] ISA K, ARSHAD M R, ISHAK S. A hybriddriven underwater glider model, hydrodynamics estimation, and an analysis of the motion control [J]. Ocean Engineering, 2014, 81: 111-129.
[20] SUN C, SONG B, WANG P. Parametric geometric model and shape optimization of an underwater glider with blendedwingbody [J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(6): 995-1006.
[21] JIANG Q L, LEI H, WANG X D, et al. Balance parameters calculation method of underwater glider based on BP neural network [C]∥ OCEANS 2015. Genova: IEEE, 2015: 13.

[1] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 706-713.
[2] TANG Zhi-dong, YUN Chao. Quick action coupling technology in full-automatic quick coupling device: a review[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 461-470.
[3] XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng. Magnetic driving method of inspection robot for HVDC transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1937-1945.
[4] ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1980-1986.
[5] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1677-1683.
[6] DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1298-1306.
[7] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1381-1386.
[8] ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.
[9] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 385-391.
[10] HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2261-2268.
[11] LI Wei, ZHAO Zhi gang, SHI Guang tian, MENG Jia dong. Solutions of kinematics and dynamics for parallel cable driven system with multi robots[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1916-1923.
[12] MA Zi ang, XIANG Zhi yu. Calibration and 3D reconstruction with omnidirectional ranging by optic flow camera[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1651-1657.
[13] HE Xue-jun, WANG Jin, LU Guo-dong, CHEN Li.
Optimization of robot image drawing sequence based on ant colony algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1139-1145.
[14] YUAN Kang-zheng, ZHU Wei-dong, CHEN Lei, XUE Lei, QI Wen-gang. Approach for calibrating position of displacement sensor mounted on robot end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 829-834.
[15] FU Xing-wei, WU Gong-ping, ZHOU Peng, YU Na. Energy-consumption estimation of inspection robot based on Kalman filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 670-675.